Sarafan ChEM-H


Showing 51-100 of 140 Results

  • Stuart Goodman, MD, PhD

    Stuart Goodman, MD, PhD

    The Robert L. and Mary Ellenburg Professor of Surgery and Professor, by courtesy, of Bioengineering

    Current Research and Scholarly InterestsAs an academic orthopaedic surgeon, my interests center on adult reconstructive surgery, arthritis surgery, joint replacement, biomaterials, biocompatibility, tissue engineering, mesenchymal stem cells. Collaborative clinical, applied and basic research studies are ongoing.

  • Or Gozani

    Or Gozani

    Dr. Morris Herzstein Professor

    Current Research and Scholarly InterestsWe study the molecular mechanisms by which chromatin-signaling networks effect nuclear and epigenetic programs, and how dysregulation of these pathways leads to disease. Our work centers on the biology of lysine methylation, a principal chromatin-regulatory mechanism that directs epigenetic processes. We study how lysine methylation events are generated, sensed, and transduced, and how these chemical marks integrate with other nuclear signaling systems to govern diverse cellular functions.

  • Nathanael S. Gray

    Nathanael S. Gray

    Krishnan-Shah Family Professor

    BioNathanael Gray is the Krishnan-Shah Family Professor of Chemical and Systems Biology at Stanford, Co-Director of Cancer Drug Discovery Co-Leader of the Cancer Therapeutics Research Program, Member of Chem-H, and Program Leader for Small Molecule Drug Discovery for the Innovative Medicines Accelerator (IMA). His research utilizes the tools of synthetic chemistry, protein biochemistry, and cancer biology to discover and validate new strategies for the inhibition of anti-cancer targets. Dr. Gray’s research has had broad impact in the areas of kinase inhibitor design and in circumventing drug resistance.
    Dr. Gray received his PhD in organic chemistry from the University of California at Berkeley in 1999 after receiving his BS degree with the highest honor award from the same institution in 1995. After completing his PhD, Dr. Gray was recruited to the newly established Genomics Institute of the Novartis Research Foundation (GNF) in San Diego, California. During his six year stay at GNF, Dr. Gray became the director of biological chemistry where he supervised a group of over fifty researchers integrating chemical, biological and pharmacological approaches towards the development of new experimental drugs. Some of the notable accomplishments of Dr. Gray’s team at GNF include: discovery of the first allosteric inhibitors of wild-type and mutant forms of BCR-ABL which resulted in clinical development of ABL001; discovery of the first selective inhibitors of the Anaplastic Lymphoma Kinase (ALK), an achievement that led to the development of now FDA-approved drugs such as ceritinib (LDK378) for the treatment of EML4-ALK expressing non-small cell lung cancer (NSCLC); and discovery that sphingosine-1-phosphate receptor-1 (S1P1) is the pharmacologically relevant target of the immunosuppressant drug Fingomilod (FTY720) followed by the development of Siponimod (BAF312), which is currently used for the treatment of multiple sclerosis.
    In 2006, Dr. Gray returned to academia as a faculty member at the Dana Farber Cancer Institute and Harvard Medical School in Boston. There, he has established a discovery chemistry group that focuses on developing first-in-class inhibitors for newly emerging biological targets, including resistant alleles of existing targets, as well as inhibitors of well-validated targets, such as Her3 and RAS, that have previously been considered recalcitrant to small molecule drug development. Dr. Gray’s team developed covalent inhibitors of the T790M mutant of EGFR inspired the development of Osimertinib (AZD9291), now FDA approved for treatment of patients with relapsed lung cancer due to resistance to first generation EGFR inhibitors. Dr. Gray has also developed structure-based, generalized approaches for designing drugs to overcome one of the most common mechanisms of resistance observed against most kinase inhibitor drugs, mutation of the so-called "gatekeeper" residue, which has been observed in resistance to drugs targeting BCR-ABL, c-KIT and PDGFR.
    In 2021, Dr. Gray joined Stanford University where he has joined the Stanford Cancer Institute, Chem-H and the Innovative Medicines Accelerator (IMA) to spur the development of prototype drugs.
    These contributions have been recognized through numerous awards including the National Science Foundation’s Career award in 2007, the Damon Runyon Foundation Innovator award in 2008, the American Association for Cancer Research for Team Science in 2010 and for Outstanding Achievement in 2011 and the American Chemical Society award for Biological Chemistry in 2011, and the Nancy Lurie Marks endowed professorship in 2015 and the Paul Marks Prize in 2019, and the Hope Funds for Cancer Research in 2023.

  • Michael Greicius, MD, MPH

    Michael Greicius, MD, MPH

    Iqbal Farrukh and Asad Jamal Professor and Professor, by courtesy, of Psychiatry and Behavioral Sciences (Administrative and Academic Special Programs)

    Current Research and Scholarly InterestsAs the Medical Director of the Stanford Center for Memory Disorders and Principal Investigator of the Stanford Extreme Phenotypes in Alzheimer's Disease (StEP AD) Cohort, Dr. Greicius' research focuses on elucidating the neurobiologic underpinnings of AD. His lab combines cutting edge brain imaging, "deep" phenotyping, and whole-genome sequencing of human subjects to identify novel pathways involved in AD pathogenesis. The goal of his work is to develop effective treatment for AD patients.

  • Pehr Harbury

    Pehr Harbury

    Associate Professor of Biochemistry

    Current Research and Scholarly InterestsScientific breakthroughs often come on the heels of technological advances; advances that expose hidden truths of nature, and provide tools for engineering the world around us. Examples include the telescope (heliocentrism), the Michelson interferometer (relativity) and recombinant DNA (molecular evolution). Our lab explores innovative experimental approaches to problems in molecular biochemistry, focusing on technologies with the potential for broad impact.

  • Daniel Herschlag

    Daniel Herschlag

    Professor of Biochemistry and, by courtesy, of Chemical Engineering
    On Leave from 06/01/2023 To 04/30/2024

    Current Research and Scholarly InterestsOur research is aimed at understanding the chemical and physical behavior underlying biological macromolecules and systems, as these behaviors define the capabilities and limitations of biology. Toward this end we study folding and catalysis by RNA, as well as catalysis by protein enzymes.

  • Keith Hodgson

    Keith Hodgson

    David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry and Professor of Photon Science at SLAC

    BioCombining inorganic, biophysical and structural chemistry, Professor Keith Hodgson investigates how structure at molecular and macromolecular levels relates to function. Studies in the Hodgson lab have pioneered the use of synchrotron x-radiation to probe the electronic and structural environment of biomolecules. Recent efforts focus on the applications of x-ray diffraction, scattering and absorption spectroscopy to examine metalloproteins that are important in Earth’s biosphere, such as those that convert nitrogen to ammonia or methane to methanol.

    Keith O. Hodgson was born in Virginia in 1947. He studied chemistry at the University of Virginia (B.S. 1969) and University of California, Berkeley (Ph.D. 1972), with a postdoctoral year at the ETH in Zurich. He joined the Stanford Chemistry Department faculty in 1973, starting up a program of fundamental research into the use of x-rays to study chemical and biological structure that made use of the unique capabilities of the Stanford Synchrotron Radiation Lightsource (SSRL). His lab carried out pioneering x-ray absorption and x-ray crystallographic studies of proteins, laying the foundation for a new field now in broad use worldwide. In the early eighties, he began development of one of the world's first synchrotron-based structural molecular biology research and user programs, centered at SSRL. He served as SSRL Director from 1998 to 2005, and SLAC National Accelerator Laboratory (SLAC) Deputy Director (2005-2007) and Associate Laboratory Director for Photon Science (2007-2011).

    Today the Hodgson research group investigates how molecular structure at different organizational levels relates to biological and chemical function, using a variety of x-ray absorption, diffraction and scattering techniques. Typical of these molecular structural studies are investigations of metal ions as active sites of biomolecules. His research group develops and utilizes techniques such as x-ray absorption and emission spectroscopy (XAS and XES) to study the electronic and metrical details of a given metal ion in the biomolecule under a variety of natural conditions.

    A major area of focus over many years, the active site of the enzyme nitrogenase is responsible for conversion of atmospheric di-nitrogen to ammonia. Using XAS studies at the S, Fe and Mo edge, the Hodgson group has worked to understand the electronic structure as a function of redox in this cluster. They have developed new methods to study long distances in the cluster within and outside the protein. Studies are ongoing to learn how this cluster functions during catalysis and interacts with substrates and inhibitors. Other components of the protein are also under active study.

    Additional projects include the study of iron in dioxygen activation and oxidation within the binuclear iron-containing enzyme methane monooxygenase and in cytochrome oxidase. Lab members are also investigating the role of copper in electron transport and in dioxygen activation. Other studies include the electronic structure of iron-sulfur clusters in models and enzymes.

    The research group is also focusing on using the next generation of x-ray light sources, the free electron laser. Such a light source, called the LCLS, is also located at SLAC. They are also developing new approaches using x-ray free electron laser radiation to image noncrystalline biomolecules and study chemical reactivity on ultrafast time scales.

  • Marie Hollenhorst, MD, PhD

    Marie Hollenhorst, MD, PhD

    Basic Life Science Research Associate, Sarafan ChEM-H

    BioDr. Hollenhorst is a physician and scientist with expertise in non-malignant hematology, transfusion medicine, and chemical biology. Dr. Hollenhorst values the one-on-one relationships that she forms with her patients, and strives to deliver the highest quality of care for individuals with blood diseases. Her experience caring for patients drives her to ask scientific questions in the laboratory, where she aims to bring a chemical approach to the study of non-malignant blood disease.

    Dr. Hollenhorst pursued combined MD and PhD training at Harvard University, where she received a PhD in Chemical Biology under the mentorship of Professor Christopher T Walsh. She subsequently completed a residency in Internal Medicine at Brigham and Women's Hospital, a fellowship in Transfusion Medicine at Harvard Medical School, and a fellowship in Hematology at Stanford.

    Dr. Hollenhorst has an interest in the biology of platelets, which are cellular fragments that help the blood to maintain a healthy balance between bleeding and clotting. Working in the laboratory of Professor Carolyn Bertozzi of Stanford Chemistry, Dr. Hollenhorst is studying sugar molecules found on the surface of platelets that are important in controlling their function and lifespan.

    Dr. Hollenhorst's research is supported by an NIH K99 Career Pathway to Independence in Blood Science Award for Physician-Scientists, a Stanford Chemistry, Engineering & Medicine for Human Health Physician-Scientist Fellowship, and a National Blood Foundation Early-Career Scientific Research Grant.

  • Michael R. Howitt

    Michael R. Howitt

    Assistant Professor of Pathology and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur lab is broadly interested in how intestinal microbes shape our immune system to promote both health and disease. Recently we discovered that a type of intestinal epithelial cell, called tuft cells, act as sentinels stationed along the lining of the gut. Tuft cells respond to microbes, including parasites, to initiate type 2 immunity, remodel the epithelium, and alter gut physiology. Surprisingly, these changes to the intestine rely on the same chemosensory pathway found in oral taste cells. Currently, we aim to 1) elucidate the role of specific tuft cell receptors in microbial detection. 2) To understand how protozoa and bacteria within the microbiota impact host immunity. 3) Discover how tuft cells modulate surrounding cells and tissue.

  • KC Huang

    KC Huang

    Professor of Bioengineering and of Microbiology and Immunology
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsHow do cells determine their shape and grow?
    How do molecules inside cells get to the right place at the right time?

    Our group tries to answer these questions using a systems biology approach, in which we integrate interacting networks of protein and lipids with the physical forces determined by the spatial geometry of the cell. We use theoretical and computational techniques to make predictions that we can verify experimentally using synthetic, chemical, or genetic perturbations.

  • Ngan F. Huang

    Ngan F. Huang

    Associate Professor of Cardiothoracic Surgery (Cardiothoracic Surgery Research) and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsDr. Huang's laboratory aims to understand the chemical and mechanical interactions between extracellular matrix (ECM) proteins and pluripotent stem cells that regulate vascular and myogenic differentiation. The fundamental insights of cell-matrix interactions are applied towards stem cell-based therapies with respect to improving cell survival and regenerative capacity, as well as engineered vascularized tissues for therapeutic transplantation.

  • Possu Huang

    Possu Huang

    Assistant Professor of Bioengineering

    Current Research and Scholarly InterestsProtein design: molecular engineering, method development and novel therapeutics

  • Adrian Hugenmatter

    Adrian Hugenmatter

    Director of Protein Engineering

    BioDr. Adrian Hugenmatter joined ChEM-H in 2021 and is leading the Protein Therapeutics Knowledge Center. In this role he is also responsible for IMAs Protein Therapeutic module. Dr. Hugenmatter received his PhD in the laboratory of Prof. Donald Hilvert at the Swiss Federal Institute of Zurich (ETH Zurich, Switzerland), where he gained initial experience in enzymology, antibody engineering and directed evolution. Fascinated by protein engineering, he joined the laboratory of Prof. Dan Tawfik at the Weizmann Institute of Science (Israel), where he studied molecular evolution and its application in protein design. Afterwards, Dr. Hugenmatter worked as a research scientist and team leader at Roche for more than a decade. During that time, he was involved in the development and optimization several antibody lead candidates for therapeutic applications in Neuroscience and Oncology.

  • Juliana Idoyaga

    Juliana Idoyaga

    Assistant Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsThe Idoyaga Lab is focused on the function and biology of dendritic cells, which are specialized antigen-presenting cells that initiate and modulate our body’s immune responses. Considering their importance in orchestrating the quality and quantity of immune responses, dendritic cells are an indisputable target for vaccines and therapies.

    Dendritic cells are not one cell type, but a network of cells comprised of many subsets or subpopulations with distinct developmental pathways and tissue localization. It is becoming apparent that each dendritic cell subset is different in its capacity to induce and modulate specific types of immune responses; however, there is still a lack of resolution and deep understanding of dendritic cell subset functional specialization. This gap in knowledge is an impediment for the rational design of immune interventions. Our research program focuses on advancing our understanding of mouse and human dendritic cell subsets, revealing their endowed capacity to induce distinct types of immune responses, and designing novel strategies to exploit them for vaccines and therapies.

  • Peter K.  Jackson

    Peter K.  Jackson

    Professor of Microbiology and Immunology (Baxter Labs) and of Pathology

    Current Research and Scholarly InterestsCell cycle and cyclin control of DNA replication .

  • Christine Jacobs-Wagner

    Christine Jacobs-Wagner

    Dennis Cunningham Professor, Professor of Biology and of Microbiology and Immunology

    BioChristine Jacobs-Wagner is a Dennis Cunningham Professor in the Department of Biology and the ChEM-H Institute at Stanford University. She is interested in understanding the fundamental mechanisms and principles by which cells, and, in particular, bacterial cells, are able to multiple. She received her PhD in Biochemistry in 1996 from the University of Liège, Belgium where she unraveled a molecular mechanism by which some bacterial pathogens sense and respond to antibiotics attack to achieve resistance. For this work, she received multiple awards including the 1997 GE & Science Prize for Young Life Scientists. During her postdoctoral work at Stanford Medical School, she demonstrated that bacteria can localize regulatory proteins to specific intracellular regions to control signal transduction and the cell cycle, uncovering a new, unsuspected level of bacterial regulation.

    She started her own lab at Yale University in 2001. Over the years, her group made major contributions in the emerging field of bacterial cell biology and provided key molecular insights into the temporal and spatial mechanisms involved in cell morphogenesis, cell polarization, chromosome segregation and cell cycle control. For her distinguished work, she received the Pew Scholars award from the Pew Charitable Trust, the Woman in Cell Biology Junior award from the American Society of Cell Biology and the Eli Lilly award from the American Society of Microbiology. She held the Maxine F. Singer and William H. Fleming professor chairs at Yale. She was elected to the Connecticut academy of Science, the American Academy of Microbiology and the National Academy of Sciences. She has been an investigator of the Howard Hughes Medical Institute since 2008.

    Her lab moved to Stanford in 2019. Current research examines the general principles and spatiotemporal mechanisms by which bacterial cells replicate, using Caulobacter crescentus and Escherichia coli as models. Recently, the Jacobs-Wagner lab expanded their interests to the Lyme disease agent Borrelia burgdorferi, revealing unsuspected ways by which this pathogen grows and causes disease

  • Daniel Jarosz

    Daniel Jarosz

    Associate Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly InterestsMy laboratory studies conformational switches in evolution, disease, and development. We focus on how molecular chaperones, proteins that help other biomolecules to fold, affect the phenotypic output of genetic variation. To do so we combine classical biochemistry and genetics with systems-level approaches. Ultimately we seek to understand how homeostatic mechanisms influence the acquisition of biological novelty and identify means of manipulating them for therapeutic and biosynthetic benefit.

  • Paul A. Khavari, MD, PhD

    Paul A. Khavari, MD, PhD

    Carl J. Herzog Professor of Dermatology in the School of Medicine

    Current Research and Scholarly InterestsWe work in epithelial tissue as a model system to study stem cell biology, cancer and new molecular therapeutics. Epithelia cover external and internal body surfaces and undergo constant self-renewal while responding to diverse environmental stimuli. Epithelial homeostasis precisely balances stem cell-sustained proliferation and differentiation-associated cell death, a balance which is lost in many human diseases, including cancer, 90% of which arise in epithelial tissues.

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Peter S. Kim

    Peter S. Kim

    Virginia and D. K. Ludwig Professor of Biochemistry
    On Partial Leave from 09/01/2023 To 06/30/2024

    Current Research and Scholarly InterestsWe are studying the mechanism of viral membrane fusion and its inhibition by drugs and antibodies. We use the HIV envelope protein (gp120/gp41) as a model system. Some of our studies are aimed at creating an HIV vaccine. We are also characterizing protein surfaces that are referred to as "non-druggable". These surfaces are defined empirically based on failure to identify small, drug-like molecules that bind to them with high affinity and specificity.

  • Karla Kirkegaard

    Karla Kirkegaard

    Violetta L. Horton Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.

  • Bruce Koch, Ph.D.

    Bruce Koch, Ph.D.

    Director, High-Throughput Screening

    Current Role at StanfordHead, ChEM-H/CSB High Throughput Screening Knowledge Center (HTSKC)
    Staff Co-lead, IMA HTS Module

    Adviser to the SPARK Program

  • Pallavi Kompella

    Pallavi Kompella

    Res Sci, Animal Pharmacology (Basic Life Sci)

    BioPh.D., Pharmaceutical Sciences, The University of Texas at Austin
    Fulbright U.S. Postdoctoral Scholar, Biomedical Research Institute of Malaga, Spain

  • Eric Kool

    Eric Kool

    George A. and Hilda M. Daubert Professor of Chemistry

    Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
    • Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
    • Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation

  • Jin Billy Li

    Jin Billy Li

    Professor of Genetics

    Current Research and Scholarly InterestsThe Li Lab is primarily interested in RNA editing mediated by ADAR enzymes. We co-discovered that the major function of RNA editing is to label endogenous dsRNAs as "self" to avoid being recognized as "non-self" by MDA5, a host innate immune dsRNA sensor, leading us to pursue therapeutic applications in cancer, autoimmune diseases, and viral infection. The other major direction of the lab is to develop technologies to harness endogenous ADAR enzymes for site-specific transcriptome engineering.

  • Lingyin Li

    Lingyin Li

    Associate Professor of Biochemistry

    BioDr. Li is an associate professor in the Biochemistry Department and ChEM-H Institute at Stanford since 2015. Her lab works on understanding biochemical mechanisms of innate immunity and harnessing it to treat cancer. She majored in chemistry at University of Science and Technology of China and graduated with a B. En in 2003. She then trained with Dr. Laura Kiessling, a pioneer in chemical biology, at University of Wisconsin-Madison and graduated with a Ph.D in chemistry in 2010. She obtained her postdoctoral training with Dr. Timothy Mitchison at Harvard Medical School, who introduced her to the field of chemical immunology.

  • Michael Lin

    Michael Lin

    Associate Professor of Neurobiology, of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur lab applies biochemical and engineering principles to the development of protein-based tools for investigating biology in living animals. Topics of investigation include fluorescent protein-based voltage indicators, synthetic light-controllable proteins, bioluminescent reporters, and applications to studying animal models of disease.

  • Kyle Loh

    Kyle Loh

    Assistant Professor of Developmental Biology (Stem Cell)

    BioHow the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human embryonic stem cells develop into over twenty different human cell-types. This roadmap allowed us to generate enriched populations of human liver, bone, heart and blood vessel precursors in a Petri dish from embryonic stem cells. Each of these tissue precursors could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to our interests in developmental and stem cell biology, we also interested in discovering the entry receptors and target cells of deadly biosafety level 4 viruses, together with our collaborators.

    Kyle attended the County College of Morris and Rutgers University, and received his Ph.D. from Stanford University (working with Irving Weissman), with fellowships from the Hertz Foundation, National Science Foundation and Davidson Institute for Talent Development. He then continued as a Siebel Investigator, and later, as an Assistant Professor and The Anthony DiGenova Endowed Faculty Scholar at Stanford, where he is jointly appointed in the Department of Developmental Biology and Institute for Stem Cell Biology & Regenerative Medicine. Kyle is a Packard Fellow, Pew Scholar, Human Frontier Science Program Young Investigator and Baxter Foundation Faculty Scholar, and his research has been recognized by the NIH Director's Early Independence Award, Forbes 30 Under 30, Harold Weintraub Graduate Award, Hertz Foundation Thesis Prize and A*STAR Investigatorship.

  • Jonathan Z. Long

    Jonathan Z. Long

    Associate Professor of Pathology

    BioDr. Jonathan Long is an Associate Professor of Pathology and an Institute Scholar of Stanford ChEM-H (Chemistry, Engineering & Medicine for Human Health). His laboratory studies signaling pathways in mammalian energy metabolism. The long-term goal of this program is to discover new molecules and pathways that can be translated into therapeutic opportunities for obesity, metabolic disease, and other age-associated chronic diseases. Work from the laboratory has been recognized by numerous awards from the Alfred P. Sloan Foundation, the National Institutes of Health, the American Diabetes Association, and the Ono Pharma Foundation. Prior to arriving to Stanford, Dr. Long completed his Ph.D. in Chemistry at Scripps Research and his postdoctoral work at Harvard Medical School.

  • Sharon R. Long

    Sharon R. Long

    William C. Steere, Jr. - Pfizer Inc. Professor of Biological Sciences and Professor, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsBiochemistry, genetics and cell biology of plant-bacterial symbiosis

  • Anson Lowe

    Anson Lowe

    Associate Professor of Medicine (Gastroenterology and Hepatology), Emeritus

    Current Research and Scholarly InterestsThe laboratory is focused on the relationship between injury, wound healing, and cancer. Esophageal, gastric, and pancreatic cancers are a focus. We are particularly interested in the regulation of cell signaling by EGFR, the EGF receptor. In addition to cancer pathogenesis, active projects include the development of new diagnostic assays and drugs.

  • Sydney X. Lu

    Sydney X. Lu

    Assistant Professor of Medicine (Hematology)

    BioSydney Lu is a hematologist and medical oncologist in the Division of Hematology, Department of Medicine, studying novel therapeutics for challenging cancers and immune disorders.
    Sydney's research career started with graduate studies in the laboratory of Dr. Marcel van den Brink at Memorial Sloan Kettering Cancer Center (MSKCC) studying the biology of pathologic donor T cells during graft-versus-host-disease and beneficial T cells mediating graft-versus-tumor effects after allogeneic bone marrow transplant, as well as the role of the thymus in regenerating healthy and protective donor-derived T cells post-transplant.
    The direct relevance of these cellular therapies and their immediate translational applicability to patients inspired him to attend medical school at Stanford and further training in hematology and medical oncology at Memorial Sloan Kettering. There, as a fellow and junior faculty member, he studied disordered RNA splicing in cancer in the laboratory of Dr. Omar Abdel-Wahab, with the goal of developing novel drugs targeting RNA splicing. This work has led to observations that targeted degradation of the RNA binding protein RBM39 may be a feasible therapeutic for the treatment of myeloid cancers bearing RNA splicing factor mutations and that pharmacologic RNA splicing inhibition can generate MHC I-presented peptide neoantigens which are exploitable for immunotherapy in model systems.

    Sydney's laboratory is broadly interested in studying RNA processing and splicing in the contexts of:
    1) normal and pathologic immunity and immunotherapy
    2) cancer biology
    3) normal and malignant hematopoiesis

  • Liqun Luo

    Liqun Luo

    Ann and Bill Swindells Professor and Professor, by courtesy, of Neurobiology

    Current Research and Scholarly InterestsWe study how neurons are organized into specialized circuits to perform specific functions and how these circuits are assembled during development. We have developed molecular-genetic and viral tools, and are combining them with transcriptomic, proteomic, physiological, and behavioral approaches to study these problems. Topics include: 1) assembly of the fly olfactory circuit; 2) assembly of neural circuits in the mouse brain; 3) organization and function of neural circuits; 4) Tool development.

  • Ruben Y. Luo

    Ruben Y. Luo

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsApply top-down mass spectrometry and label-free immunoassay to the study and utilization of biomarker proteoforms in clinical diagnosis.

  • Vinit B. Mahajan, MD, PhD

    Vinit B. Mahajan, MD, PhD

    Professor of Ophthalmology

    Current Research and Scholarly InterestsOur focus is the development of personalized medicine for eye diseases through translation of our discoveries in proteomics, genomics, and phenomics in humans, mice and tissue culture models.

  • Nicole M. Martinez

    Nicole M. Martinez

    Assistant Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly InterestsThe Martinez lab studies RNA regulatory mechanisms that control gene expression. We focus on mRNA processing, RNA modifications and their roles in development and disease.

  • Michaëlle Ntala Mayalu

    Michaëlle Ntala Mayalu

    Assistant Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    BioDr. Michaëlle N. Mayalu is an Assistant Professor of Mechanical Engineering. She received her Ph.D., M.S., and B.S., degrees in Mechanical Engineering at the Massachusetts Institute of Technology. She was a postdoctoral scholar at the California Institute of Technology in the Computing and Mathematical Sciences Department. She was a 2017 California Alliance Postdoctoral Fellowship Program recipient and a 2019 Burroughs Wellcome Fund Postdoctoral Enrichment Program award recipient. She is also a 2023 Hypothesis Fund Grantee.

    Dr. Michaëlle N. Mayalu's area of expertise is in mathematical modeling and control theory of synthetic biological and biomedical systems. She is interested in the development of control theoretic tools for understanding, controlling, and predicting biological function at the molecular, cellular, and organismal levels to optimize therapeutic intervention.

    She is the director of the Mayalu Lab whose research objective is to investigate how to optimize biomedical therapeutic designs using theoretical and computational approaches coupled with experiments. Initial project concepts include: i) theoretical and experimental design of bacterial "microrobots" for preemptive and targeted therapeutic intervention, ii) system-level multi-scale modeling of gut associated skin disorders for virtual evaluation and optimization of therapy, iii) theoretical and experimental design of "microrobotic" swarms of engineered bacteria with sophisticated centralized and decentralized control schemes to explore possible mechanisms of pattern formation. The experimental projects in the Mayalu Lab utilize established techniques borrowed from the field of synthetic biology to develop synthetic genetic circuits in E. coli to make bacterial "microrobots". Ultimately the Mayalu Lab aims to develop accurate and efficient modeling frameworks that incorporate computation, dynamical systems, and control theory that will become more widespread and impactful in the design of electro-mechanical and biological therapeutic machines.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Timothy Meyer

    Timothy Meyer

    Stanford University Professor of Nephrology, Emeritus

    Current Research and Scholarly InterestsInadequate removal of uremic solutes contributes to widespread illness in the more than 500,000 Americans maintained on dialysis. But we know remarkably little about these solutes. Dr. Meyer's research efforts are focused on identifying which uremic solutes are toxic, how these solutes are made, and how their production could be decreased or their removal could be increased. We should be able to improve treatment if we knew more about what we are trying to remove.

  • Paul Salomon Mischel

    Paul Salomon Mischel

    Fortinet Founders Professor and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy research bridges cancer genetics, signal transduction and cellular metabolism as we aim to understand the molecular mechanisms that drive cancer development, progression, and drug resistance. We have made a series of discoveries that have identified a central role for ecDNA (extrachromosomal DNA) in cancer development, progression, accelerated tumor evolution and drug resistance.

  • W. E. Moerner

    W. E. Moerner

    Harry S. Mosher Professor

    Current Research and Scholarly InterestsLaser spectroscopy and microscopy of single molecules to probe biological systems, one biomolecule at a time. Primary thrusts: fluorescence microscopy far beyond the optical diffraction limit (PALM/STORM/STED), methods for 3D optical microscopy in cells, and trapping of single biomolecules in solution for extended study. We explore protein localization patterns in bacteria, structures of amyloid aggregates in cells, signaling proteins in the primary cilium, and dynamics of DNA and RNA.

  • Denise M. Monack

    Denise M. Monack

    Martha Meier Weiland Professor in the School of Medicine

    Current Research and Scholarly InterestsThe primary focus of my research is to understand the genetic and molecular mechanisms of intracellular bacterial pathogenesis. We use several model systems to study complex host-pathogen interactions in the gut and in immune cells such as macrophages and dendritic cells. Ultimately we would like to understand how Salmonella persists within certain hosts for years in the face of a robust immune response.

  • David Myung, MD, PhD

    David Myung, MD, PhD

    Associate Professor of Ophthalmology and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsNovel biomaterials to reconstruct the wounded cornea
    Mesenchymal stem cell therapy for corneal and ocular surface regeneration
    Engineered biomolecule therapies for promote corneal wound healing

    Telemedicine in ophthalmology

  • Lauren O'Connell

    Lauren O'Connell

    Assistant Professor of Biology

    Current Research and Scholarly InterestsThe O'Connell lab studies how genetic and environmental factors contribute to biological diversity and adaptation. We are particularly interested in understanding (1) how behavior evolves through changes in brain function and (2) how animal physiology evolves through repurposing existing cellular components.

  • Sergiu P. Pasca

    Sergiu P. Pasca

    Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences and Bonnie Uytengsu and Family Director of the Stanford Brain Organogenesis Program

    Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
    To address this, we are developing bottom-up approaches to generate and assemble, from multi-cellular components, human neural circuits in vitro and in vivo.
    We introduced the use of instructive signals for deriving from human pluripotent stem cells self-organizing 3D cellular structures named brain region-specific spheroids/organoids. We demonstrated that these cultures, such as the ones resembling the cerebral cortex, can be reliably derived across many lines and experiments, contain synaptically connected neurons and non-reactive astrocytes, and can be used to gain mechanistic insights into genetic and environmental brain disorders. Moreover, when maintained as long-term cultures, they recapitulate an intrinsic program of maturation that progresses towards postnatal stages.
    We also pioneered a modular system to integrate 3D brain region-specific organoids and study human neuronal migration and neural circuit formation in functional preparations that we named assembloids. We have actively applied these models in combination with studies in long-term ex vivo brain preparations to acquire a deeper understanding of human physiology, evolution and disease mechanisms.
    We have carved a unique research program that combines rigorous in vivo and in vitro neuroscience, stem cell and molecular biology approaches to construct and deconstruct previously inaccessible stages of human brain development and function in health and disease.
    We believe science is a community effort, and accordingly, we have been advancing the field by broadly and openly sharing our technologies with numerous laboratories around the world and organizing the primary research conference and the training courses in the area of cellular models of the human brain.

  • Suzanne Pfeffer

    Suzanne Pfeffer

    Emma Pfeiffer Merner Professor of Medical Sciences

    Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.

  • Matthew Porteus

    Matthew Porteus

    Sutardja Chuk Professor of Definitive and Curative Medicine

    BioDr. Porteus was raised in California and was a local graduate of Gunn High School before completing A.B. degree in “History and Science” at Harvard University where he graduated Magna Cum Laude and wrote an thesis entitled “Safe or Dangerous Chimeras: The recombinant DNA controversy as a conflict between differing socially constructed interpretations of recombinant DNA technology.” He then returned to the area and completed his combined MD, PhD at Stanford Medical School with his PhD focused on understanding the molecular basis of mammalian forebrain development with his PhD thesis entitled “Isolation and Characterization of TES-1/DLX-2: A Novel Homeobox Gene Expressed During Mammalian Forebrain Development.” After completion of his dual degree program, he was an intern and resident in Pediatrics at Boston Children’s Hospital and then completed his Pediatric Hematology/Oncology fellowship in the combined Boston Chidlren’s Hospital/Dana Farber Cancer Institute program. For his fellowship and post-doctoral research he worked with Dr. David Baltimore at MIT and CalTech where he began his studies in developing homologous recombination as a strategy to correct disease causing mutations in stem cells as definitive and curative therapy for children with genetic diseases of the blood, particularly sickle cell disease. Following his training with Dr. Baltimore, he took an independent faculty position at UT Southwestern in the Departments of Pediatrics and Biochemistry before again returning to Stanford in 2010 as an Associate Professor. During this time his work has been the first to demonstrate that gene correction could be achieved in human cells at frequencies that were high enough to potentially cure patients and is considered one of the pioneers and founders of the field of genome editing—a field that now encompasses thousands of labs and several new companies throughout the world. His research program continues to focus on developing genome editing by homologous recombination as curative therapy for children with genetic diseases but also has interests in the clonal dynamics of heterogeneous populations and the use of genome editing to better understand diseases that affect children including infant leukemias and genetic diseases that affect the muscle. Clinically, Dr. Porteus attends at the Lucille Packard Children’s Hospital where he takes care of pediatric patients undergoing hematopoietic stem cell transplantation.