Sarafan ChEM-H


Showing 201-210 of 216 Results

  • Taia T. Wang, MD, PhD, MSCI

    Taia T. Wang, MD, PhD, MSCI

    Assistant Professor of Medicine (Infectious Diseases) and of Microbiology and Immunology

    Current Research and Scholarly InterestsLaboratory of Mechanisms in Human Immunity and Disease Pathogenesis

    Antibodies are a critical component of host defense. While the importance of humoral immunity has been recognized for decades, substantial gaps in knowledge remain around how antibodies function, and how their function is regulated, in vivo. Our laboratory performs studies designed to fill in these gaps, with the goal of enabling new vaccine and therapeutic strategies to prevent human disease. My interest in this area culminated from training in medicine, RNA virus biology (PhD), and molecular antibody biology (postdoctoral training). The intersection of these topics, viral immunity and disease pathogenesis, is the focus of our work. The essential question driving our research is why a small subset of people develop severe or fatal disease during viral infection while most infections result in a subclinical or mild outcome, even in at-risk populations. Our hypothesis is that the antibody signaling pathways that are engaged during viral infection through Fc gamma receptors (FcγRs) are a key driver of these distinct outcomes. We are focused on several major unknowns to address this hypothesis: How are antibody effector functions regulated in vivo and does this change in disease? How do distinct signaling pathways engaged by IgG immune complex-FcγR interactions impact host cell genetic regulation and the ultimate inflammatory/immune response? What are the tissue-specific functions that antibodies engage? How does the heterogeneity in post-translational modifications (PTMs) of human antibodies contribute to heterogeneity in viral immunity?



    Current clinical studies:
    Recruiting:

    An Open Label Study of IgG Fc Glycan Composition in Human Immunity
    Principal Investigator: Taia T. Wang, MD, PhD
    ClinicalTrials.gov Identifier:
    NCT01967238

  • Xinnan Wang

    Xinnan Wang

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Robert Waymouth

    Robert Waymouth

    Robert Eckles Swain Professor of Chemistry and Professor, by courtesy, of Chemical Engineering

    BioRobert Eckles Swain Professor in Chemistry Robert Waymouth investigates new catalytic strategies to create useful new molecules, including bioactive polymers, synthetic fuels, and sustainable plastics. In one such breakthrough, Professor Waymouth and Professor Wender developed a new class of gene delivery agents.

    Born in 1960 in Warner Robins, Georgia, Robert Waymouth studied chemistry and mathematics at Washington and Lee University in Lexington, Virginia (B.S. and B.A., respectively, both summa cum laude, 1982). He developed an interest in synthetic and mechanistic organometallic chemistry during his doctoral studies in chemistry at the California Institute of Technology under Professor R.H. Grubbs (Ph.D., 1987). His postdoctoral research with Professor Piero Pino at the Institut fur Polymere, ETH Zurich, Switzerland, focused on catalytic hydrogenation with chiral metallocene catalysts. He joined the Stanford University faculty as assistant professor in 1988, becoming full professor in 1997 and in 2000 the Robert Eckles Swain Professor of Chemistry.

    Today, the Waymouth Group applies mechanistic principles to develop new concepts in catalysis, with particular focus on the development of organometallic and organic catalysts for the synthesis of complex macromolecular architectures. In organometallic catalysis, the group devised a highly selective alcohol oxidation catalyst that selectively oxidizes unprotected polyols and carbohydrates to alpha-hyroxyketones. In collaboration with Dr. James Hedrick of IBM, we have developed a platform of highly active organic catalysts and continuous flow reactors that provide access to polymer architectures that are difficult to access by conventional approaches.

    The Waymouth group has devised selective organocatalytic strategies for the synthesis of functional degradable polymers and oligomers that function as "molecular transporters" to deliver genes, drugs and probes into cells and live animals. These advances led to the joint discovery with the Wender group of a general, safe, and remarkably effective concept for RNA delivery based on a new class of synthetic cationic materials, Charge-Altering Releasable Transporters (CARTs). This technology has been shown to be effective for mRNA based cancer vaccines.

  • William Weis

    William Weis

    Member, Bio-X

    Current Research and Scholarly InterestsOur laboratory studies molecular interactions that underlie the establishment and maintenance of cell and tissue structure. Our principal areas of interest are the architecture and dynamics of intercellular adhesion junctions, signaling pathways that govern cell fate determination, and determinants of cell polarity. Our overall approach is to reconstitute macromolecular assemblies with purified components in order to analyze them using biochemical, biophysical and structural methods.

  • Paul Wender

    Paul Wender

    Francis W. Bergstrom Professor and Professor, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsMolecular imaging, therapeutics, drug delivery, drug mode of action, synthesis

  • Albert Y. Wu, MD, PhD, FACS

    Albert Y. Wu, MD, PhD, FACS

    Assistant Professor of Ophthalmology

    Current Research and Scholarly InterestsMy translational research focuses on using autologous stem cells to recreate a patient’s ocular tissues for potential transplantation. We are generating tissue from induced pluripotent stem cells to treat limbal stem cell deficiency in patients who are bilaterally blind. By applying my background in molecular and cellular biology, stem cell biology, oculoplastic surgery, I hope to make regenerative medicine a reality for those suffering from orbital and ocular disease.