Sarafan ChEM-H


Showing 141-160 of 217 Results

  • Timothy Meyer

    Timothy Meyer

    Stanford University Professor of Nephrology, Emeritus

    Current Research and Scholarly InterestsInadequate removal of uremic solutes contributes to widespread illness in the more than 500,000 Americans maintained on dialysis. But we know remarkably little about these solutes. Dr. Meyer's research efforts are focused on identifying which uremic solutes are toxic, how these solutes are made, and how their production could be decreased or their removal could be increased. We should be able to improve treatment if we knew more about what we are trying to remove.

  • Paul Salomon Mischel

    Paul Salomon Mischel

    Fortinet Founders Professor and Professor, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsMy research bridges cancer genetics, signal transduction and cellular metabolism as we aim to understand the molecular mechanisms that drive cancer development, progression, and drug resistance. We have made a series of discoveries that have identified a central role for ecDNA (extrachromosomal DNA) in cancer development, progression, accelerated tumor evolution and drug resistance.

  • W. E. Moerner

    W. E. Moerner

    Harry S. Mosher Professor

    Current Research and Scholarly InterestsLaser spectroscopy and microscopy of single molecules to probe biological systems, one biomolecule at a time. Primary thrusts: fluorescence microscopy far beyond the optical diffraction limit (PALM/STORM/STED), methods for 3D optical microscopy in cells, and trapping of single biomolecules in solution for extended study. We explore protein localization patterns in bacteria, structures of amyloid aggregates in cells, signaling proteins in the primary cilium, and dynamics of DNA and RNA.

  • Denise M. Monack

    Denise M. Monack

    Martha Meier Weiland Professor in the School of Medicine

    Current Research and Scholarly InterestsThe primary focus of my research is to understand the genetic and molecular mechanisms of intracellular bacterial pathogenesis. We use several model systems to study complex host-pathogen interactions in the gut and in immune cells such as macrophages and dendritic cells. Ultimately we would like to understand how Salmonella persists within certain hosts for years in the face of a robust immune response.

  • David Myung, MD, PhD

    David Myung, MD, PhD

    Associate Professor of Ophthalmology and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsNovel biomaterials to reconstruct the wounded cornea
    Mesenchymal stem cell therapy for corneal and ocular surface regeneration
    Engineered biomolecule therapies for promote corneal wound healing

    Telemedicine in ophthalmology

  • Lauren O'Connell

    Lauren O'Connell

    Assistant Professor of Biology

    Current Research and Scholarly InterestsThe O'Connell lab studies how genetic and environmental factors contribute to biological diversity and adaptation. We are particularly interested in understanding (1) how behavior evolves through changes in brain function and (2) how animal physiology evolves through repurposing existing cellular components.

  • Sergiu P. Pasca

    Sergiu P. Pasca

    Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences and Bonnie Uytengsu and Family Director of the Stanford Brain Organogenesis Program

    Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
    To address this, we are developing bottom-up approaches to generate and assemble, from multi-cellular components, human neural circuits in vitro and in vivo.
    We introduced the use of instructive signals for deriving from human pluripotent stem cells self-organizing 3D cellular structures named brain region-specific spheroids/organoids. We demonstrated that these cultures, such as the ones resembling the cerebral cortex, can be reliably derived across many lines and experiments, contain synaptically connected neurons and non-reactive astrocytes, and can be used to gain mechanistic insights into genetic and environmental brain disorders. Moreover, when maintained as long-term cultures, they recapitulate an intrinsic program of maturation that progresses towards postnatal stages.
    We also pioneered a modular system to integrate 3D brain region-specific organoids and study human neuronal migration and neural circuit formation in functional preparations that we named assembloids. We have actively applied these models in combination with studies in long-term ex vivo brain preparations to acquire a deeper understanding of human physiology, evolution and disease mechanisms.
    We have carved a unique research program that combines rigorous in vivo and in vitro neuroscience, stem cell and molecular biology approaches to construct and deconstruct previously inaccessible stages of human brain development and function in health and disease.
    We believe science is a community effort, and accordingly, we have been advancing the field by broadly and openly sharing our technologies with numerous laboratories around the world and organizing the primary research conference and the training courses in the area of cellular models of the human brain.

  • Suzanne Pfeffer

    Suzanne Pfeffer

    Emma Pfeiffer Merner Professor of Medical Sciences

    Current Research and Scholarly InterestsThe major focus of our research is to understand the molecular basis of inherited Parkinson's Disease (PD). We focus on the LRRK2 kinase that is inappropriately activated in PD and how it phosphorylates Rab GTPases, blocking the formation of primary cilia in specific regions of the brain. The absence of primary cilia renders cells unable to carry out Hedgehog signaling that is critical for neuroprotective pathways that sustain dopamine neurons.

  • Elizabeth Ponder

    Elizabeth Ponder

    Executive Director, Sarafan ChEM-H

    BioDr. Elizabeth Ponder joined Stanford ChEM-H in 2014 and is currently the Executive Director of Sarafan ChEM-H and the Stanford Innovative Medicines Accelerator (IMA). Dr. Ponder completed her Ph.D. and postdoctoral training at Stanford University in the laboratory of Dr. Matthew Bogyo. Her past work has included promoting public-private partnerships in the non-profit sector, managing multidisciplinary research in the higher education sector, and business development consulting in the for-profit biotech sector. Dr. Ponder joined ChEM-H from the University of California, Berkeley where she served as the Executive Director of the Henry Wheeler Center for Emerging & Neglected Diseases (CEND).

  • Matthew Porteus

    Matthew Porteus

    Sutardja Chuk Professor of Definitive and Curative Medicine

    BioDr. Porteus was raised in California and was a local graduate of Gunn High School before completing A.B. degree in “History and Science” at Harvard University where he graduated Magna Cum Laude and wrote an thesis entitled “Safe or Dangerous Chimeras: The recombinant DNA controversy as a conflict between differing socially constructed interpretations of recombinant DNA technology.” He then returned to the area and completed his combined MD, PhD at Stanford Medical School with his PhD focused on understanding the molecular basis of mammalian forebrain development with his PhD thesis entitled “Isolation and Characterization of TES-1/DLX-2: A Novel Homeobox Gene Expressed During Mammalian Forebrain Development.” After completion of his dual degree program, he was an intern and resident in Pediatrics at Boston Children’s Hospital and then completed his Pediatric Hematology/Oncology fellowship in the combined Boston Chidlren’s Hospital/Dana Farber Cancer Institute program. For his fellowship and post-doctoral research he worked with Dr. David Baltimore at MIT and CalTech where he began his studies in developing homologous recombination as a strategy to correct disease causing mutations in stem cells as definitive and curative therapy for children with genetic diseases of the blood, particularly sickle cell disease. Following his training with Dr. Baltimore, he took an independent faculty position at UT Southwestern in the Departments of Pediatrics and Biochemistry before again returning to Stanford in 2010 as an Associate Professor. During this time his work has been the first to demonstrate that gene correction could be achieved in human cells at frequencies that were high enough to potentially cure patients and is considered one of the pioneers and founders of the field of genome editing—a field that now encompasses thousands of labs and several new companies throughout the world. His research program continues to focus on developing genome editing by homologous recombination as curative therapy for children with genetic diseases but also has interests in the clonal dynamics of heterogeneous populations and the use of genome editing to better understand diseases that affect children including infant leukemias and genetic diseases that affect the muscle. Clinically, Dr. Porteus attends at the Lucille Packard Children’s Hospital where he takes care of pediatric patients undergoing hematopoietic stem cell transplantation.

  • Guillem Pratx

    Guillem Pratx

    Associate Professor of Radiation Oncology (Radiation Physics)

    Current Research and Scholarly InterestsThe Physical Oncology Lab is interested in making a lasting impact on translational cancer research by building novel physical tools and methods.