Stanford ChEM-H


Showing 1-5 of 5 Results

  • Scott Dixon

    Scott Dixon

    Assistant Professor of Biology

    Current Research and Scholarly InterestsMy lab is interested in the relationship between cell death and metabolism. Using techniques drawn from many disciplines my laboratory is investigating how perturbation of intracellular metabolic networks can result in novel forms of cell death, such as ferroptosis. We are interested in applying this knowledge to find new ways to treat diseases characterized by insufficient (e.g. cancer) or excessive (e.g. neurodegeneration) cell death.

  • Marc C. Deller, D. Phil.

    Marc C. Deller, D. Phil.

    Senior Research Scientist, Stanford ChEM-H

    BioDr. Marc C. Deller, D.Phil currently leads the ChEM-H Macromolecular Structure Knowledge Center. Dr. Deller graduated with a D.Phil. from The University of Oxford in 2000, where he carried out research in the laboratory of Prof. E. Yvonne Jones on the structure and function of cytokines and cytokine receptors. He continued research in this field for his postdoctoral training at Yale University. Dr. Deller joins ChEM-H with 17 years of combined industrial and academic experience in high-throughput protein expression, purification, crystallization and structure determination, including time at Pfizer Pharmaceuticals and The Joint Center for Structural Genomics at The Scripps Research Institute in La Jolla, CA.

  • Justin Du Bois

    Justin Du Bois

    Associate Professor of Chemistry and, by courtesy, of Chemical and Systems Biology

    BioResearch and Scholarship

    Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C–H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.

    The Du Bois group has described new tactics for the selective conversion of saturated C–H to C–N and C–O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C–H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.

    In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models.

  • Alexander Dunn

    Alexander Dunn

    Associate Professor of Chemical Engineering

    Current Research and Scholarly InterestsMy lab is deeply interested in understand how living cells sense and respond to mechanical stimuli.