Stanford ChEM-H


Showing 1-8 of 8 Results

  • Jessica Feldman

    Jessica Feldman

    Assistant Professor of Biology

    Current Research and Scholarly InterestsWe are interested in understanding design principles within cells that contribute to the diversification of cellular form and function. Using a combination of genetic, biochemical, and live imaging approaches, we are investigating how the microtubule cytoskeleton is spatially organized and the mechanisms underlying organizational changes during development.

  • Polly Fordyce

    Polly Fordyce

    Assistant Professor of Genetics and of Bioengineering

    Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on two main areas: using microfluidic tools we have already developed to build ground-up quantitative models of how gene expression is regulated, and developing new tools to explore protein-protein interactions.

  • Dean W. Felsher

    Dean W. Felsher

    Professor of Medicine (Oncology) and of Pathology

    Current Research and Scholarly InterestsMy laboratory investigates how oncogenes initiate and sustain tumorigenesis. I have developed model systems whereby I can conditionally activate oncogenes in normal human and mouse cells in tissue culture or in specific tissues of transgenic mice. In particular using the tetracycline regulatory system, I have generated a conditional model system for MYC-induced tumors. I have shown that cancers caused by the conditional over-expression of the MYC proto-oncogene regress with its inactivation.

  • Daniel Fernandez

    Daniel Fernandez

    Basic Life Science Research Associate, Stanford ChEM-H

    BioMy research interests have always been focused on understanding how molecules affecting our everyday life work and interact with each other. Since enzymes, proteins, DNA, and RNA, and their ligands, drugs, cofactors, and metal ions, are all extremely tiny entities invisible to the naked eye, I use crystallographic methods to bring them alive. In a crystal, molecules associate themselves following a regular pattern in three-dimensions, so that impinging extremely energetic light on them will cause it to diffract. The diffracted rays produce an image that is recorded and mathematically converted to atom types, bond lengths, bond angles, and non-covalent bonding interactions. Since the level of resolution achieved with this methodology is the atom, powerful X-ray light, the kind produced at a synchrotron source like SLAC, is employed.

    My fifteen years experience, first in single-crystal small-molecule crystallography (molecules of less than hundred atoms), and then in macromolecular crystallography, had taught me how difficult the road to a successful crystal structure determination can be. Obtaining good quality crystals for X-ray diffraction analysis is paramount: your subject could never crystallize! Yet, tremendous advances in recent years, with the inception of automation and platforms dedicated for protein crystallography, have endowed researchers new tools to tip the balance towards achieving the goal of a successful crystal structure determination.

    Now, as part of the Stanford ChEM-H Macromolecular Structure Knowledge Center, I will continue focusing my studies on crystals, and, therefore, I am welcoming you to join our community.

  • Michael Fischbach

    Michael Fischbach

    Associate Professor of Bioengineering

    BioMichael Fischbach is an Associate Professor in the Department of Bioengineering at Stanford University and a member of Stanford ChEM-H. Fischbach is a recipient of the NIH Director's Pioneer and New Innovator Awards, an HHMI-Simons Faculty Scholars Award, a Fellowship for Science and Engineering from the David and Lucille Packard Foundation, a Medical Research Award from the W.M. Keck Foundation, a Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Disease award, and a Glenn Award for Research in Biological Mechanisms of Aging. His laboratory uses a combination of genomics and chemistry to identify and characterize small molecules from microbes, with an emphasis on the human microbiome. Fischbach received his Ph.D. as a John and Fannie Hertz Foundation Fellow in chemistry from Harvard in 2007, where he studied the role of iron acquisition in bacterial pathogenesis and the biosynthesis of antibiotics. Before coming to UCSF, he spent two years as an independent fellow at Massachusetts General Hospital coordinating a collaborative effort based at the Broad Institute to develop genomics-based approaches to the discovery of small molecules from microbes. Fischbach is a member of the board of directors of Achaogen, the scientific advisory boards of NGM Biopharmaceuticals, Cell Design Labs, and Indigo Agriculture, and is a co-founder of Revolution Medicines.

  • Paige M. Fox, MD PhD

    Paige M. Fox, MD PhD

    Assistant Professor of Surgery (Plastic and Reconstructive Surgery) at the Stanford University Medical Center

    BioDr. Paige Fox is Board Certified Plastic Surgeon who specialized in hand surgery, reconstructive microsurgery, as well as peripheral nerve and brachial plexus surgery. She is an Assistant Professor in the Division of Plastic and Reconstructive surgery in the Department of Surgery. She works with adult and pediatric patients. Her research focuses on wound healing, disorders of the upper extremity, and surgical biosensors.

  • Judith Frydman

    Judith Frydman

    Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics

    Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.

  • Gerald Fuller

    Gerald Fuller

    Fletcher Jones II Professor in the School of Engineering

    BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).

    Another application of orientation dynamics is in the development of solar cells. The efficiency of second-generation solar cells fabricated with conjugated polymers is limited by photoelectron transport within the polymer film. Inspired by electrorheological fluids, an external electric field is applied to the film to induce anisotropy in polymer crystallites, which is expected to enhance electron mobility.

    The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.

    There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films.