Stanford ChEM-H


Showing 1-9 of 9 Results

  • Vijay Pande

    Vijay Pande

    Henry Dreyfus Professor of Chemistry and Professor, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsThe central theme of our research is to develop and apply novel theoretical methods to understand the physical properties of biological molecules, such as proteins, nucleic acids, lipid membranes, and small molecule therapeutics (eg protein folding or lipid vesicle fusion). As these phenomena are complex, my research employs novel theoretical and computational techniques. We apply these methods to develop novel therapeutics for protein misfolding diseases, such as Alzheimer's Disease.

  • Beth L. Pruitt

    Beth L. Pruitt

    Professor of Bioengineering and of Mechanical Engineering

    Current Research and Scholarly InterestsWe are interested in microscale mechanics and MEMS-based metrologies primarily for small scale mechanics sensing and acutation. Applied research focuses on systems development and characterization. Fundamental research questions focus on mechanotransduction and cellular biomechanics.

  • Elizabeth Ponder

    Elizabeth Ponder

    Associate Director, ChEM-H Operations

    BioDr. Elizabeth Ponder joined Stanford ChEM-H in 2014 as the Associate Director. She leads planning and operations for ChEM-H in partnership with the faculty executive committee. Dr. Ponder completed her Ph.D. and postdoctoral training at Stanford University in the laboratory of Dr. Matthew Bogyo. Her past work has included promoting public-private partnerships in the non-profit sector, managing multidisciplinary research in the higher education sector, and business development consulting in the for-profit biotech sector. Dr. Ponder joined ChEM-H from the University of California, Berkeley where she served as the Executive Director of the Henry Wheeler Center for Emerging & Neglected Diseases (CEND).

  • Guillem Pratx

    Guillem Pratx

    Assistant Professor of Radiation Oncology (Radiation Physics)

    Current Research and Scholarly InterestsMy research interests center around three areas of medical physics: radionuclide imaging, X-ray molecular imaging and high-performance medical computing. My research efforts aim to advance cancer care by integrating new imaging techniques into the clinical workflow, and further our basic understanding of cancer biology by designing new assays that can probe subtle biochemical processes in single cells.

  • Matthew Porteus

    Matthew Porteus

    Associate Professor of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsGenome Editing and Population Dynamics for Gene Therapy and Cancer Research

  • Manu Prakash

    Manu Prakash

    Assistant Professor of Bioengineering

    BioWe are a curiosity driven research group working in the field of physical biology. Our approach brings together experimental and theoretical techniques from soft-condensed matter physics, fluid dynamics, theory of computation and unconventional micro and nano-fabrication to open problems in biology: from organismal to cellular and molecular scale. We design and build precision instrumentation including droplet microfluidic tools to probe and perturb biological machines and their synthetic analogues. Along the way, we invent novel technologies in global health context with clinical applications in extreme resource poor settings.

  • Florence Pojer

    Florence Pojer

    Affiliate, ChEM-H Operations
    Visiting Scholar, ChEM-H Operations

    BioVisiting Scientist from Ecole Polytechnique de Lausanne (EPFL, Switzerland).
    Head of Protein crystallography Core Facility at EPFL.
    Specialist in Protein purification, biochemistry and structural biology in particular crystallography and structure-based drug design.

  • Sergiu P. Pasca

    Sergiu P. Pasca

    Assistant Professor of Psychiatry and Behavioral Sciences (Sleep Disorder/Sleep Center)

    Current Research and Scholarly InterestsA critical challenge in understanding the intricate programs underlying development, assembly and dysfunction of the human brain is the lack of direct access to intact, functioning human brain tissue for detailed investigation by imaging, recording, and stimulation.
    Our lab is using pluripotent stem cells derived non-invasively from human individuals to generate in a dish specific regions of the human brain in a functional 3D preparation we have developed. We are using months-to-years long ‘brain-a-dish’ cultures (also known as brain region-specific organoids or spheroids) to understand how neurons find their final position in the brain and how they mature functionally. To investigate how different brain regions talk to each-other in normal and diseased states, we introduced a new approach for in vitro assembly of neural circuits, also known as assembloids.
    We employ state-of-the-art stem cell biology, genome engineering, imaging and neuroscience approaches to identify the dynamical processes that go awry in neural cells derived from patients with neuropsychiatric disorders, such as autism or schizophrenia, and what should be therapeutically targeted in these conditions.