Stanford Neurosciences Institute


Showing 351-360 of 374 Results

  • Monte Winslow

    Monte Winslow

    Assistant Professor of Genetics and of Pathology

    Current Research and Scholarly InterestsOur laboratory uses genome-wide methods to uncover alterations that drive cancer progression and metastasis in genetically-engineered mouse models of human cancers. We combine cell-culture based mechanistic studies with our ability to alter pathways of interest during tumor progression in vivo to better understand each step of metastatic spread and to uncover the therapeutic vulnerabilities of advanced cancer cells.

  • Max Wintermark

    Max Wintermark

    Professor of Radiology (Neuroimaging and Neurointervention) and, by courtesy, of Neurology, of Neurosurgery and of Psychiatry and Behavioral Sciences at the Stanford University Medical Center

    Current Research and Scholarly InterestsStroke, cerebrovascular diseases, cardiovascular diseases, carotid arteries, coronary arteries
    Stroke diagnosis, stroke triage, stroke treatment
    Traumatic brain injury
    Traumatic brain injury diagnosis and prognosis
    Psychiatric disorders, including depression and post-traumatic stress disorders
    Epilepsy
    Movement disorders, including essential tremor and Parkinson’s tremor
    Brain tumors
    Image-guided clinical trials
    CT, multidetector-row CT, perfusion-CT, CT angiography
    MRI, diffusion-weighted MRI, perfusion-weighted MRI, diffusion tensor imaging, functional MRI
    Brain perfusion imaging techniques
    Functional imaging
    Post-processing techniques of medical images, signal and image processing
    3D visualization
    MR-guided focused ultrasound

  • H.-S. Philip Wong

    H.-S. Philip Wong

    Willard R. and Inez Kerr Bell Professor in the School of Engineering

    BioWong joined Stanford in 2004 after 16 years at IBM Research, with appointments as research staff member, Manager, and Senior Manager. While at IBM, he was responsible for shaping and executing IBM's strategy on nanoscale science and technology and silicon technology. His interests are in the area of nanoscale science and technology, semiconductor technology, solid-state devices, and electronic imaging.

    His present research covers a broad range of topics including carbon electronics, 2D layered materials, wireless implantable biosensors, directed self-assembly, nanoelectromechanical relays, device modeling, brain-inspired computing, and non-volatile memory devices such as phase change memory and metal oxide resistance change memory.

  • Wing Hung Wong

    Wing Hung Wong

    Stephen R. Pierce Family Goldman Sachs Professor in Science and Human Health and Professor of Biomedical Data Science

    Current Research and Scholarly InterestsCurrent interest centers on the application of statistics to biology and medicine. We are particularly interested in questions concerning gene regulation, genome interpretation and their applications to precision medicine.

  • Hsi-Yang Wu

    Hsi-Yang Wu

    Associate Professor of Urology at the Stanford University Medical Center

    Current Research and Scholarly InterestsI am interested in how the brain matures to control the bladder and external sphincter to achieve urinary continence. Using functional MRI of the brain, we are investigating if certain patterns of activity will predict which children will respond to therapy for incontinence.

  • Courtney Wusthoff, MD

    Courtney Wusthoff, MD

    Assistant Professor of Neurology and, by courtesy, of Pediatrics (Neonatology) at the Stanford University Medical Center

    Current Research and Scholarly InterestsMy projects focus on clinical research in newborns with, or at risk, for brain injury. I use EEG in at-risk neonates to better understand the underlying pathophysiology of risk factors that may lead to worse outcomes. I am particularly interested in neonatal seizures and how they may exacerbate perinatal brain injury with a goal to identify treatments that might protect the vulnerable brain. I am also interested in EEG in other pediatric populations, as well as medical ethics and global health.

  • Joanna Wysocka

    Joanna Wysocka

    Professor of Chemical and Systems Biology and of Developmental Biology

    Current Research and Scholarly InterestsThe precise and robust regulation of gene expression is a cornerstone for complex biological life. Research in our laboratory is focused on understanding how regulatory information encoded by the genome is integrated with the transcriptional machinery and chromatin context to allow for emergence of form and function during human embryogenesis and evolution, and how perturbations in this process lead to disease.

  • Tony Wyss-Coray, PhD

    Tony Wyss-Coray, PhD

    Professor of Neurology

    Current Research and Scholarly InterestsUse of genetic and molecular tools to dissect immune and inflammatory pathways in Alzheimer's and neurodegeneration.

  • Daniel Yamins

    Daniel Yamins

    Assistant Professor of Psychology and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsOur lab's research lies at intersection of neuroscience, artificial intelligence, psychology and large-scale data analysis. It is founded on two mutually reinforcing hypotheses:

    H1. By studying how the brain solves computational challenges, we can learn to build better artificial intelligence algorithms.

    H2. Through improving artificial intelligence algorithms, we'll discover better models of how the brain works.

    We investigate these hypotheses using techniques from computational modeling and artificial intelligence, high-throughput neurophysiology, functional brain imaging, behavioral psychophysics, and large-scale data analysis.

  • Fan Yang

    Fan Yang

    Associate Professor of Orthopaedic Surgery and of Bioengineering

    Current Research and Scholarly InterestsOur research seeks to understand how microenvironmental cues regulate stem cell fate, and to develop novel biomaterials and stem cell-based therapeutics for tissue engineering and regenerative medicine. Our work spans from fundamental science, technology development, to translational research.We are particularly interested in developing better therapies for treating musculoskeletal diseases, cardiovascular diseases and cancer.