Stanford Woods Institute for the Environment


Showing 161-166 of 166 Results

  • Barry Weingast

    Barry Weingast

    Ward C. Krebs Family Professor and Senior Fellow at the Hoover Institution, at the Stanford Institute for Economic Policy Research and, by courtesy, at the Freeman Spogli Institute for International Studies

    BioBarry R. Weingast is the Ward C. Krebs Family Professor, Department of Political Science, and a Senior Fellow, Hoover Institution. He served as Chair, Department of Political Science, from 1996 through 2001. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences.

    Weingast’s research focuses on the political foundation of markets, economic reform, and regulation. He has written extensively on problems of political economy of development, federalism and decentralization, legal institutions and the rule of law, and democracy. Weingast is co-author of Violence and Social Orders: A Conceptual Framework for Interpreting Recorded Human History (with Douglass C. North and John Joseph Wallis, 2009, Cambridge: Cambridge University Press) and Analytic Narratives (1998, Princeton). He edited (with Donald Wittman) The Oxford Handbook of Political Economy (Oxford University Press, 2006). Weingast has won numerous awards, including the William H. Riker Prize, the Heinz Eulau Prize (with Ken Shepsle), the Franklin L. Burdette Pi Sigma Alpha Award (with Kenneth Schultz), and the James L. Barr Memorial Prize in Public Economics.

  • John Weyant

    John Weyant

    Professor (Research) of Management Science and Engineering and Senior Fellow at the Precourt Institute for Energy

    BioJohn P. Weyant is Professor of Management Science and Engineering, Director of the Energy Modeling Forum (EMF) and Deputy Director of the Precourt Institute for Energy Efficiency at Stanford University. He is also a Senior Fellow of the Precourt Institute for Energy and an an affiliated faculty member of the Stanford School of Earth, Environment and Energy Sciences, the Woods Institute for the Environment, and the Freeman-Spogli Institute for International Studies at Stanford. His current research focuses on analysis of global climate change policy systems and analysis, energy efficiency analysis, energy technology assessment, and models for strategic planning.

    Weyant has been a convening lead author or lead author for the Intergovernmental Panel on Climate Change for chapters on integrated assessment, greenhouse gas mitigation, integrated climate impacts, and sustainable development, and most recently served as a review editor for the climate change mitigation working group of the IPCC's forth assessment report. He was also a founder and serves as chairman of the Integrated Assessment Modeling Consortium (IAMC), a five year old collaboratory with 53 member institutions from around the world. He has been active in the U.S. debate on climate change policy through the Department of State, the Department of Energy, and the Environmental Protection Agency. In California, he is a member of the California Air Resources Board's Economic and Technology Advancement Advisory Committee (ETAAC) which is charged with making recommendations for technology policies to help implement AB 32, The Global Warming Solutions Act of 2006.

    Weyant was awarded the US Association for Energy Economics’ 2008 Adelmann-Frankel award for unique and innovative contributions to the field of energy economics. Weyant was honored in 2007 as a major contributor to the Nobel Peace prize awarded to the Intergovernmental Panel on Climate Change and in 2008 by Chairman Mary Nichols for contributions to the to the California Air Resources Board's Economic and Technology Advancement Advisory Committee on AB 32.

    Fields of Specialization:
    Energy/Environmental Policy Analysis, Strategic Planning

    Interests:
    Weyant's research focuses on global climate change systems and policy analysis, energy security analysis, Japanese energy policy, and methods for strategic planning.

  • Frank Wolak

    Frank Wolak

    Holbrook Working Professor in Commodity Price Studies, Senior Fellow at the Freeman Spogli Institute, at the Precourt Institute and at the Stanford Institute for Economic Policy Research

    BioFrank A. Wolak is a Professor in the Department of Economics at Stanford University. His fields of specialization are Industrial Organization and Econometric Theory. His recent work studies methods for introducing competition into infrastructure industries -- telecommunications, electricity, water delivery and postal delivery services -- and on assessing the impacts of these competition policies on consumer and producer welfare. He is the Chairman of the Market Surveillance Committee of the California Independent System Operator for electricity supply industry in California. He is a visiting scholar at University of California Energy Institute and a Research Associate of the National Bureau of Economic Research (NBER).

    Professor Wolak received his Ph.D. and M.S. from Harvard University and his B.A. from Rice University.

  • Dick Zare

    Dick Zare

    Marguerite Blake Wilbur Professor in Natural Science and Professor, by courtesy, of Physics

    Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.

    Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.

    Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:

    The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.

    Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.

  • Howard Zebker

    Howard Zebker

    Professor of Electrical Engineering and of Geophysics

    Current Research and Scholarly InterestsResearch
    My students and I study the surfaces of Earth and planets using radar remote sensing methods. Our specialization is interferometric radar, or InSAR. InSAR is a technique to measure mm-scale surface deformation at fine resolution over wide areas, and much of our work follows from applying this technique to the study of earthquakes, volcanoes, and human-induced subsidence. We also address global environmental problems by tracking the movement of ice in the polar regions. whose ice mass balance affects sea level rise and global climate. We participate in NASA space missions such as Cassini, in which we now are examining the largest moon of Saturn, Titan, to try and deduce its composition and evolution. Our work includes experimental observation and modeling the measurements to best understand processes affecting the Earth and solar system. We use data acquired by spaceborne satellites and by large, ground-based radar telescopes to support our research.

    Teaching
    I teach courses related to remote sensing methods and applications, and how these methods can be used to study the world around us. At the undergraduate level, these include introductory remote sensing uses of the full electromagnetic spectrum to characterize Earth and planetary surfaces and atmospheres, and methods of digital image processing. I also teach a freshman and sophomore seminar course on natural hazards. At the graduate level, the courses are more specialized, including the math and physics of two-dimensional imaging systems, plus detailed ourses on imaging radar systems for geophysical applications.

    Professional Activities
    InSAR Review Board, NASA Jet Propulsion Laboratory (2006-present); editorial board, IEEE Proceedings (2005-present); NRC Earth Science and Applications from Space Panel on Solid Earth Hazards, Resources, and Dynamics (2005-present); Chair, Western North America InSAR (WInSAR) Consortium (2004-06); organizing committee, NASA/NSF/USGS InSAR working group; International Union of Radioscience (URSI) Board of Experts for Medal Evaluations (2004-05); National Astronomy and Ionospheric Center, Arecibo Observatory, Visiting Committee, (2002-04; chair, 2003-04); NASA Alaska SAR Facility users working group (2000-present); associate editor, IEEE Transactions on Geoscience and Remote Sensing (1998-present); fellow, IEEE (1998)