Stanford Woods Institute for the Environment


Showing 201-206 of 206 Results

  • John Weyant

    John Weyant

    Professor (Research) of Management Science and Engineering and Senior Fellow at the Precourt Institute for Energy

    BioJohn P. Weyant is Professor of Management Science and Engineering, Director of the Energy Modeling Forum (EMF) and Deputy Director of the Precourt Institute for Energy Efficiency at Stanford University. He is also a Senior Fellow of the Precourt Institute for Energy and an an affiliated faculty member of the Stanford School of Earth, Environment and Energy Sciences, the Woods Institute for the Environment, and the Freeman-Spogli Institute for International Studies at Stanford. His current research focuses on analysis of multi-sector, multi-region coupled human and earth sytsems dynamics, global change systems analysis, energy technology assessment, and models for strategic planning.

    Weyant was a founder and serves as chairman of the Integrated Assessment Modeling Consortium (IAMC), a thirteen year old collaboratory with over 60 member institutions from around the world. He has been an active adviser to the United Nations, the European Commission, U.S.Department of Energy, the U.S. Department of State, aod the Environmental Protection Agency. In California, he has been and adviser to the California Air Resources, the California Energy Commission and the California Public Utilities Commission..

    Weyant was awarded the US Association for Energy Economics’ 2008 Adelmann-Frankel award for unique and innovative contributions to the field of energy economics and the award for outstanding lifetime contributions to the Profession for 2017 from the International Association for Energy Economics, and a Life Time Achievement award from the Integrated Assessment Modeling Consortium in 2018. Weyant was honored in 2007 as a major contributor to the Nobel Peace prize awarded to the Intergovernmental Panel on Climate Change and in 2008 by Chairman Mary Nichols for contributions to the to the California Air Resources Board's Economic and Technology Advancement Advisory Committee on AB 32.

    Fields of Specialization:
    Energy/Environmental Policy Analysis, Strategic Planning

    Interests:
    Overall goal is to accelerate the use of systems models at state, country, and global scales, aiming to provide the best available information and insights to government and private-sector decision makers. Specific areas include energy, climate change, and sustainable development policy, including emerging technologies and market design alternatives. Draws on concepts and techniques from science and engineering fundamentals (e.g., thermodynamics, fluid mechanics, materials science, and electrical power systems), operations research, economics, finance, and decision theory.

  • Mele Wheaton

    Mele Wheaton

    Social Science Research Scholar, Research Staff - Other

    Current Role at StanfordResearch Scholar, Graduate School of Education and Woods Institute for the Environment

  • Frank Wolak

    Frank Wolak

    Holbrook Working Professor in Commodity Price Studies and Senior Fellow at the Freeman Spogli Institute and at the Stanford Institute for Economic Policy Research

    BioFrank A. Wolak is a Professor in the Department of Economics at Stanford University. His fields of specialization are Industrial Organization and Econometric Theory. His recent work studies methods for introducing competition into infrastructure industries -- telecommunications, electricity, water delivery and postal delivery services -- and on assessing the impacts of these competition policies on consumer and producer welfare. He is the Chairman of the Market Surveillance Committee of the California Independent System Operator for electricity supply industry in California. He is a visiting scholar at University of California Energy Institute and a Research Associate of the National Bureau of Economic Research (NBER).

    Professor Wolak received his Ph.D. and M.S. from Harvard University and his B.A. from Rice University.

  • Gabrielle Wong-Parodi

    Gabrielle Wong-Parodi

    Assistant Professor of Earth System Science and Center Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsMy research uses a decision science approach for informing the development of behaviorally realistic policies and strategies for meeting the challenge of global environmental change. I am primarily interested in understanding and enhancing adaptive responses to this change given the rich context of people's lives in order to promote long-term resiliency and sustainability.

  • Richard Zare

    Richard Zare

    Marguerite Blake Wilbur Professor in Natural Science and Professor, by courtesy, of Physics

    Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.

    Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.

    Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:

    The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.

    Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.

  • Howard Zebker

    Howard Zebker

    Professor of Electrical Engineering and of Geophysics

    Current Research and Scholarly InterestsResearch
    My students and I study the surfaces of Earth and planets using radar remote sensing methods. Our specialization is interferometric radar, or InSAR. InSAR is a technique to measure mm-scale surface deformation at fine resolution over wide areas, and much of our work follows from applying this technique to the study of earthquakes, volcanoes, and human-induced subsidence. We also address global environmental problems by tracking the movement of ice in the polar regions. whose ice mass balance affects sea level rise and global climate. We participate in NASA space missions such as Cassini, in which we now are examining the largest moon of Saturn, Titan, to try and deduce its composition and evolution. Our work includes experimental observation and modeling the measurements to best understand processes affecting the Earth and solar system. We use data acquired by spaceborne satellites and by large, ground-based radar telescopes to support our research.

    Teaching
    I teach courses related to remote sensing methods and applications, and how these methods can be used to study the world around us. At the undergraduate level, these include introductory remote sensing uses of the full electromagnetic spectrum to characterize Earth and planetary surfaces and atmospheres, and methods of digital image processing. I also teach a freshman and sophomore seminar course on natural hazards. At the graduate level, the courses are more specialized, including the math and physics of two-dimensional imaging systems, plus detailed ourses on imaging radar systems for geophysical applications.

    Professional Activities
    InSAR Review Board, NASA Jet Propulsion Laboratory (2006-present); editorial board, IEEE Proceedings (2005-present); NRC Earth Science and Applications from Space Panel on Solid Earth Hazards, Resources, and Dynamics (2005-present); Chair, Western North America InSAR (WInSAR) Consortium (2004-06); organizing committee, NASA/NSF/USGS InSAR working group; International Union of Radioscience (URSI) Board of Experts for Medal Evaluations (2004-05); National Astronomy and Ionospheric Center, Arecibo Observatory, Visiting Committee, (2002-04; chair, 2003-04); NASA Alaska SAR Facility users working group (2000-present); associate editor, IEEE Transactions on Geoscience and Remote Sensing (1998-present); fellow, IEEE (1998)