Wu Tsai Neurosciences Institute


Showing 1-29 of 29 Results

  • Julia Kaltschmidt

    Julia Kaltschmidt

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsThe lab’s primary research interest is to understand how specific neuronal circuits are established. We use mouse genetics, combinatorial immunochemical labeling and high-resolution laser scanning microscopy to identify, manipulate, and quantitatively analyze synaptic contacts within the complex neuronal milieu of the spinal cord and the enteric nervous system.

  • Noa Katz

    Noa Katz

    Postdoctoral Scholar, Chemical Engineering

    BioNoa Katz is a Stanford Science Fellow and an EMBO and Fulbright postdoctoral scholar at Stanford University. She implements biomolecular gene circuits to study and manipulate the central nervous system to promote therapeutic applications for neuro-regeneration and autism.

  • Makoto Kawai

    Makoto Kawai

    Clinical Associate Professor, Psychiatry and Behavioral Sciences - Sleep Medicine

    BioI am a physician scientist in the field of sleep medicine in aging and brain function. Using combined polysomnogram and novel neuroimaging technology, I aim to identify potential sleep biomarkers to investigate the mechanism of progression from normal aging to Mild Cognitive Impairment (MCI) or dementia. I also investigate the impact of sleep on cognitive/affective function or behavior abnormality in various neurodevelopmental and neurodegenerative disorders.

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor of Pediatrics, and Professor of Genetics

    Current Research and Scholarly InterestsMark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Corey Keller, MD, PhD

    Corey Keller, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    Current Research and Scholarly InterestsThe goal of my lab is to understand the fundamental principles of human brain plasticity and build trans-diagnostic real-time monitoring platforms for personalized neurotherapeutics.

    We use an array of neuroscience methods to better understand the basic principles of how to create change in brain circuits. We use this knowledge to develop more effective treatment strategies for depression and other psychiatric disorders.

  • Oussama Khatib

    Oussama Khatib

    Weichai Professor and Professor, by courtesy, of Electrical Engineering

    BioRobotics research on novel control architectures, algorithms, sensing, and human-friendly designs for advanced capabilities in complex environments. With a focus on enabling robots to interact cooperatively and safely with humans and the physical world, these studies bring understanding of human movements for therapy, athletic training, and performance enhancement. Our work on understanding human cognitive task representation and physical skills is enabling transfer for increased robot autonomy. With these core capabilities, we are exploring applications in healthcare and wellness, industry and service, farms and smart cities, and dangerous and unreachable settings -- deep in oceans, mines, and space.

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Butrus Khuri-Yakub

    Butrus Khuri-Yakub

    Professor (Research) of Electrical Engineering, Emeritus

    BioButrus (Pierre) T. Khuri-Yakub is a Professor of Electrical Engineering at Stanford University. He received the BS degree from the American University of Beirut, the MS degree from Dartmouth College, and the Ph.D. degree from Stanford University, all in electrical engineering. His current research interests include medical ultrasound imaging and therapy, ultrasound neuro-stimulation, chemical/biological sensors, gas flow and energy flow sensing, micromachined ultrasonic transducers, and ultrasonic fluid ejectors. He has authored over 600 publications and has been principal inventor or co-inventor of 107 US and international issued patents. He was awarded the Medal of the City of Bordeaux in 1983 for his contributions to Nondestructive Evaluation, the Distinguished Advisor Award of the School of Engineering at Stanford University in 1987, the Distinguished Lecturer Award of the IEEE UFFC society in 1999, a Stanford University Outstanding Inventor Award in 2004, Distinguished Alumnus Award of the School of Engineering of the American University of Beirut in 2005, Stanford Biodesign Certificate of Appreciation for commitment to educate, mentor and inspire Biodesgin Fellows, 2011, and 2011 recipient of IEEE Rayleigh award.

  • Mathew Kiang

    Mathew Kiang

    Assistant Professor of Epidemiology and Population Health (Epidemiology)

    BioI am an assistant professor in the Department of Epidemiology and Population Health. My research lies at the intersection of computational epidemiology and social epidemiology. Methodologically, my work revolves around combining disparate data sources in epidemiologically meaningful ways. For example, I work with individual-level, non-health data (e.g., GPS, accelerometer, and other sensor data from smartphones), traditional health data (e.g., survey, health systems, or death certificate data), and third-party data (e.g., cellphone providers or ad-tech data). To do this, I use a variety of methods such as joint Bayesian spatial models, traditional epidemiologic models, dynamical models, microsimulation, and demographic analysis. Substantively, my work focuses on socioeconomic and racial/ethnic inequities. For example, recently, my work has examined inequities in COVID-19 vaccine distribution, cause-specific excess mortality, and drug poisonings. I have an NIDA-funded R00 examining equitable ways to improve treatment for opioid use disorder across structurally disadvantaged groups and am Co-I on a NIDA-funded R21 examining ways to use novel data sources (such as social media) to predict surges in opioid-related mortality.

  • Peter S. Kim

    Peter S. Kim

    Virginia and D. K. Ludwig Professor of Biochemistry

    Current Research and Scholarly InterestsWe are studying the mechanism of viral membrane fusion and its inhibition by drugs and antibodies. We use the HIV envelope protein (gp120/gp41) as a model system. Some of our studies are aimed at creating an HIV vaccine. We are also characterizing protein surfaces that are referred to as "non-druggable". These surfaces are defined empirically based on failure to identify small, drug-like molecules that bind to them with high affinity and specificity.

  • Seung K. Kim  M.D., Ph.D.

    Seung K. Kim M.D., Ph.D.

    KM Mulberry Professor, Professor of Developmental Biology, of Medicine (Endocrinology) and, by courtesy, of Pediatrics (Endocrinology)

    Current Research and Scholarly InterestsWe study the development of pancreatic islet cells using molecular, embryologic and genetic methods in several model systems, including mice, pigs, human pancreas, embryonic stem cells, and Drosophila. Our work suggests that critical factors required for islet development are also needed to maintain essential functions of the mature islet. These approaches have informed efforts to generate replacement islets from renewable sources for diabetes.

  • David Kingsley

    David Kingsley

    Rudy J. and Daphne Donohue Munzer Professor in the School of Medicine

    Current Research and Scholarly InterestsWe use mice, stickleback fish, and humans to study the molecular basis of evolution and common diseases. By combining genetics and genomics, we have identified key DNA changes that control bone formation, limb patterning, hair color, brain evolution, and susceptibility to arthritis, schizophrenia, and bipolar disorder. We find that the same genetic mechanisms are often used repeatedly in nature, providing new insights into the origin of key traits in many different species, including ourselves.

  • Eric I. Knudsen

    Eric I. Knudsen

    Edward C. and Amy H. Sewall Professor in the School of Medicine, Emeritus

    Current Research and Scholarly InterestsCellular mechanisms of spatial attention and learning, studied in the central nervous system in birds, using behavioral, systems, cellular and molecular techniques.

  • Brian Knutson

    Brian Knutson

    Professor of Psychology

    Current Research and Scholarly InterestsMy lab and I seek to elucidate the neural basis of emotion (affective neuroscience), and explore implications for decision-making (neuroeconomics) and psychopathology (neurophenomics).

  • Brian Kobilka

    Brian Kobilka

    Hélène Irwin Fagan Chair of Cardiology

    Current Research and Scholarly InterestsStructure, function and physiology of adrenergic receptors.

  • Mykel Kochenderfer

    Mykel Kochenderfer

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Computer Science

    BioMykel Kochenderfer is Associate Professor of Aeronautics and Astronautics at Stanford University. Prior to joining the faculty, he was at MIT Lincoln Laboratory where he worked on airspace modeling and aircraft collision avoidance, with his early work leading to the establishment of the ACAS X program. He received a Ph.D. from the University of Edinburgh and B.S. and M.S. degrees in computer science from Stanford University. Prof. Kochenderfer is the director of the Stanford Intelligent Systems Laboratory (SISL), conducting research on advanced algorithms and analytical methods for the design of robust decision making systems. Of particular interest are systems for air traffic control, unmanned aircraft, and other aerospace applications where decisions must be made in uncertain, dynamic environments while maintaining safety and efficiency. Research at SISL focuses on efficient computational methods for deriving optimal decision strategies from high-dimensional, probabilistic problem representations. He is an author of "Decision Making under Uncertainty: Theory and Application" (2015), "Algorithms for Optimization" (2019), and "Algorithms for Decision Making" (2022), all from MIT Press. He is a third generation pilot.

  • Eric Kool

    Eric Kool

    George A. and Hilda M. Daubert Professor of Chemistry

    Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
    • Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
    • Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation

  • Ron Kopito

    Ron Kopito

    Professor of Biology

    Current Research and Scholarly InterestsOur laboratory use state-of-the-art cell biological, genetic and systems-level approaches to understand how proteins are correctly synthesized, folded and assembled in the mammalian secretory pathway, how errors in this process are detected and how abnormal proteins are destroyed by the ubiquitin-proteasome system.

  • Lorrin Koran

    Lorrin Koran

    Professor (Clinical) of Psychiatry and Behavioral Sciences, Emeritus

    Current Research and Scholarly Interestsobsessive-compulsive disorder, depressive disorders, psychopharmacology, cost-effectiveness studies, trichotillomania, compulsive buying, pathological gambling,kleptomania.

  • Andrea Lora Kossler, MD, FACS

    Andrea Lora Kossler, MD, FACS

    Assoc Professor of Ophthalmology

    Current Research and Scholarly InterestsThyroid Eye Disease
    Adenoid Cystic Carcinoma of the Lacrimal Gland
    Lacrimal Gland Stimulation for the Treatment of Dry Eyes
    Neurostimulation
    Orbital Tumors
    Floppy Eyelid Syndrome and Obstructive Sleep Apnea

  • Gregory Kovacs

    Gregory Kovacs

    Professor of Electrical Engineering, Emeritus

    Current Research and Scholarly InterestsHis present research areas include instruments for biomedical and biological applications including space flight, solid-state sensors and actuators, cell-based sensors for toxin detection and pharmaceutical screening, microfluidics, electronic interfaces to tissue, and biotechnology, all with emphasis on solving practical problems.

  • Elizabeth Bailey Kozleski

    Elizabeth Bailey Kozleski

    Professor (Research) of Education

    BioI engage in systems change and research on equity and justice issues in inclusive education in schools, school systems as well as state and national education organizations and agencies. My research interests include the analysis of systems change in education, how teachers learn in practice in complex, diverse school settings, including how educational practices improve student learning. Awards include the 2023 Luminary Award from the Division of Culturally and Linguistically Diverse Exceptional Children, Council of Exceptional Children; the 2018 Budig Award for Teaching Excellence in Special Education at the University of Kansas; the 2017 Boeing-Allan Visiting Endowed Chair at Seattle University; the University of Kansas 2016 Woman of Distinction award; the 2013 Scholar of the Century award from the University of Northern Colorado; the 2011 TED-Merrill award for leadership in special education teacher education in 2011; and the UNESCO Chair in Inclusive International Research. I co-lead the World Education Research Association International Research Network on Student Voice for Promoting Equity and Inclusion in Schools along with Professor Kyriaki Messiou of the University of South Hampton, UK.

    A number of my articles focus on the design and development of teacher education programs that involve extensive clinical practice in general education settings. I have led the development of such programs in three universities, and continue to do research and development work in teacher education. I have also offered technical assistance as well as conducted research on the impact of technical assistance on individuals, as well as local, state, and national systems in the U.S. and abroad.

    I have received funding for more than $35 million in federal, state, and local grants. I serve on the Board of Editors for the book series Inclusive Education and Partnerships, an international book series produced by Deep University. Recent books include Ability, Equity, and Culture (with co-author Kathleen King Thorius) published by Teachers College Press in ‘14 and Equity on Five Continents (with Alfredo Artiles and Federico Waitoller) published in ‘11 by Harvard Education Press.

  • Mark Krasnow

    Mark Krasnow

    Paul and Mildred Berg Professor

    Current Research and Scholarly Interests- Lung development and stem cells
    - Neural circuits of breathing and speaking
    - Lung diseases including lung cancer
    - New genetic model organism for biology, behavior, health and conservation

  • Ellen Kuhl

    Ellen Kuhl

    Catherine Holman Johnson Director of Stanford Bio-X, Walter B Reinhold Professor in the School of Engineering, Professor of Mechanical Engineering and, by courtesy, of Bioengineering

    Current Research and Scholarly Interestscomputaitonal simulation of brain development, cortical folding, computational simulation of cardiac disease, heart failure, left ventricular remodeling, electrophysiology, excitation-contraction coupling, computer-guided surgical planning, patient-specific simulation

  • Anshul Kundaje

    Anshul Kundaje

    Associate Professor of Genetics and of Computer Science

    Current Research and Scholarly InterestsWe develop statistical and machine learning frameworks to learn predictive, dynamic and causal models of gene regulation from heterogeneous functional genomics data.

  • Calvin Kuo

    Calvin Kuo

    Maureen Lyles D'Ambrogio Professor

    Current Research and Scholarly InterestsWe study cancer biology, intestinal stem cells (ISC), and angiogenesis. We use primary organoid cultures of diverse tissues and tumor biopsies for immunotherapy modeling, oncogene functional screening and stem cell biology. Angiogenesis projects include blood-brain barrier regulation, stroke therapeutics and anti-angiogenic cancer therapy. ISC projects apply organoid culture and ko mice to injury-inducible vs homeostatic stem cells and symmetric division mechanisms.

  • Clete A. Kushida, MD, PhD

    Clete A. Kushida, MD, PhD

    Professor of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsDr. Kushida is a neurologist and sleep specialist who directs several NIH- and industry-sponsored research studies, focused on topics such as the physical features and neurocognitive changes associated with the obstructive sleep apnea syndrome, the epidemiology and treatment of restless legs syndrome/periodic limb movement disorder, primary care sleep education and training, and countermeasures for sleep loss.