Wu Tsai Neurosciences Institute


Showing 11-20 of 34 Results

  • Sui Wang, PhD

    Sui Wang, PhD

    Assistant Professor of Ophthalmology

    Current Research and Scholarly InterestsOur research focuses on understanding the molecular mechanisms that underlie retinal development and diseases. We utilize genetic and genomic tools to uncover how different types of retinal cells, including retinal neurons, glia and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels, and how they interact and collectively contribute to the integrity of the retina.

    1. Retinal cell fate specification.
    We are using genetic tools and methods, such as in vivo plasmid electroporation and CRISPR, to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal cell fate specification.

    2. The multicellular responses elicited by diabetes in the retina.
    Diabetes can induce multicellular responses in the retina, including vascular lesions, glial dysfunction and neurodegeneration, all of which contribute to retinopathy. We are using diabetic rats as models to investigate the detailed molecular mechanisms underlying the diabetes-induced multicellular responses, and the disease mechanisms of diabetic retinopathy.

    3. Molecular tools that allow for cell type-specific labeling and manipulation in vivo.
    Cis-regulatory elements, such as enhancers, play essential roles in directing tissue/cell type-specific and stage-specific expression. We are interested in identifying enhancers that can drive cell type-specific expression in the retina and brain, and incorporating them into plasmid or AAV based delivery systems.

  • Xinnan Wang

    Xinnan Wang

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Irving Weissman

    Irving Weissman

    Virginia & D.K. Ludwig Professor of Clinical Investigation in Cancer Research, Professor of Developmental Biology and, by courtesy, of Biology

    Current Research and Scholarly InterestsStem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis; order of events from hematopoietic stem cells [HSC] to AML leukemia stem cells and blood diseases, and parallels in other tissues; discovery of tumor and pathogenic cell 'don't eat me' and 'eat me' signals, and translation into therapeutics.

  • Itschak Weissman

    Itschak Weissman

    Professor of Electrical Engineering

    BioTsachy's research focuses on Information Theory, Data Compression and Communications, Statistical Signal Processing, Machine Learning, the interplay between them, and their applications, with recent focus on applications to genomic data compression and processing. He is inventor of several patents and involved in several companies as member of the technical board. IEEE fellow, he serves on the board of governors of the information theory society as well as the editorial boards of the Transactions on Information Theory and Foundations and Trends in Communications and Information Theory. He is founding Director of the Stanford Compression Forum.

  • Jill Saylin Wentzell

    Jill Saylin Wentzell

    Associate Director for Programs, Wu Tsai Neurosciences Institute

    Current Role at StanfordAssociate Director for Programs at the Wu Tsai Neurosciences Institute

  • Marius Wernig

    Marius Wernig

    Professor of Pathology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsEpigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine

  • Robert West

    Robert West

    Professor of Pathology

    Current Research and Scholarly InterestsRob West, MD, PhD, is a Professor of Pathology at Stanford University Medical Center. He is a clinician scientist with experience in translational genomics research to identify new prognostic and therapeutic markers in cancer. His research focus is on the progression of neoplasia to carcinoma. His lab has developed spatially oriented in situ methods to study archival specimens. He also serves as a surgical pathologist specializing in breast pathology.

  • Gordon Wetzstein

    Gordon Wetzstein

    Associate Professor of Electrical Engineering and, by courtesy, of Computer Science

    BioGordon Wetzstein is an Associate Professor of Electrical Engineering and, by courtesy, of Computer Science at Stanford University. He is the leader of the Stanford Computational Imaging Lab and a faculty co-director of the Stanford Center for Image Systems Engineering. At the intersection of computer graphics and vision, computational optics, and applied vision science, Prof. Wetzstein's research has a wide range of applications in next-generation imaging, display, wearable computing, and microscopy systems. Prior to joining Stanford in 2014, Prof. Wetzstein was a Research Scientist at MIT, he received a Ph.D. in Computer Science from the University of British Columbia in 2011 and graduated with Honors from the Bauhaus in Weimar, Germany before that. He is the recipient of an NSF CAREER Award, an Alfred P. Sloan Fellowship, an ACM SIGGRAPH Significant New Researcher Award, a Presidential Early Career Award for Scientists and Engineers (PECASE), an SPIE Early Career Achievement Award, a Terman Fellowship, an Okawa Research Grant, the Electronic Imaging Scientist of the Year 2017 Award, an Alain Fournier Ph.D. Dissertation Award, and a Laval Virtual Award as well as Best Paper and Demo Awards at ICCP 2011, 2014, and 2016 and at ICIP 2016.

  • Matthew Wheeler

    Matthew Wheeler

    Assistant Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsTranslational research in rare and undiagnosed diseases. Basic and clinical research in cardiomyopathy genetics, mechanisms, screening, and treatment. Investigating novel agents for treatment of hypertrophic cardiomyopathy and new mechanisms in heart failure. Cardiovascular screening and genetics in competitive athletes, disease gene discovery in cardiomyopathy and rare disease. Informatics approaches to rare disease and multiomics. Molecular transducers of physical activity bioinformatics.