Wu Tsai Neurosciences Institute


Showing 11-20 of 33 Results

  • Sui Wang, PhD

    Sui Wang, PhD

    Assistant Professor of Ophthalmology

    Current Research and Scholarly InterestsOur research focuses on unraveling the molecular mechanisms underlying retinal development and diseases. We employ genetic and genomic tools to explore how various retinal cell types, including neurons, glia, and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels. In addition, we investigate their interactions and collective contributions to maintain retinal integrity.

    1. Investigating retinal development:
    We utilize genetic tools and methods such as in vivo plasmid electroporation and CRISPR to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal development.

    2. Understanding diabetes-induced cell-type-specific responses in the retina:
    Diabetes triggers a range of multicellular responses in the retina, such as vascular lesions, glial dysfunction, and neurodegeneration, all of which contribute to retinopathy. We delve into the detailed molecular mechanisms underlying these diabetes-induced cell-type-specific responses and the pathogenesis of diabetic retinopathy.

    3. Developing molecular tools for labeling and manipulation of specific cell types in vivo:
    Cis-regulatory elements, particularly enhancers, play pivotal roles in directing tissue- and cell-type-specific expression. Our interest lies in identifying enhancers that can drive cell type-specific expression in the retina and brain. We incorporate these enhancers into plasmid or AAV-based delivery systems, enabling precise labeling and manipulation of specific cell types in vivo.

  • Xinnan Wang

    Xinnan Wang

    Associate Professor of Neurosurgery

    Current Research and Scholarly InterestsMechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Irving Weissman

    Irving Weissman

    Virginia & D.K. Ludwig Professor of Clinical Investigation in Cancer Research, Professor of Pathology, and of Developmental Biology

    Current Research and Scholarly InterestsStem cell and cancer stem cell biology; development of T and B lymphocytes; cell-surface receptors for oncornaviruses in leukemia. Hematopoietic stem cells; Lymphocyte homing, lymphoma invasiveness and metastasis; order of events from hematopoietic stem cells [HSC] to AML leukemia stem cells and blood diseases, and parallels in other tissues; discovery of tumor and pathogenic cell 'don't eat me' and 'eat me' signals, and translation into therapeutics.

  • Itschak Weissman

    Itschak Weissman

    Professor of Electrical Engineering

    BioTsachy's research focuses on Information Theory, Data Compression and Communications, Statistical Signal Processing, Machine Learning, the interplay between them, and their applications, with recent focus on applications to genomic data compression and processing. He is inventor of several patents and involved in several companies as member of the technical board. IEEE fellow, he serves on the board of governors of the information theory society as well as the editorial boards of the Transactions on Information Theory and Foundations and Trends in Communications and Information Theory. He is founding Director of the Stanford Compression Forum.

  • Marius Wernig

    Marius Wernig

    Professor of Pathology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsEpigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine

  • Robert West

    Robert West

    Professor of Pathology

    Current Research and Scholarly InterestsRob West, MD, PhD, is a Professor of Pathology at Stanford University Medical Center. He is a clinician scientist with experience in translational genomics research to identify new prognostic and therapeutic markers in cancer. His research focus is on the progression of neoplasia to carcinoma. His lab has developed spatially oriented in situ methods to study archival specimens. He also serves as a surgical pathologist specializing in breast pathology.

  • Gordon Wetzstein

    Gordon Wetzstein

    Associate Professor of Electrical Engineering and, by courtesy, of Computer Science

    BioGordon Wetzstein is an Associate Professor of Electrical Engineering and, by courtesy, of Computer Science at Stanford University. He is the leader of the Stanford Computational Imaging Lab and a faculty co-director of the Stanford Center for Image Systems Engineering. At the intersection of computer graphics and vision, artificial intelligence, computational optics, and applied vision science, Prof. Wetzstein's research has a wide range of applications in next-generation imaging, wearable computing, and neural rendering systems. Prof. Wetzstein is a Fellow of Optica and the recipient of numerous awards, including an NSF CAREER Award, an Alfred P. Sloan Fellowship, an ACM SIGGRAPH Significant New Researcher Award, a Presidential Early Career Award for Scientists and Engineers (PECASE), an SPIE Early Career Achievement Award, an Electronic Imaging Scientist of the Year Award, an Alain Fournier Ph.D. Dissertation Award as well as many Best Paper and Demo Awards.

  • Matthew Wheeler

    Matthew Wheeler

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsTranslational research in rare and undiagnosed diseases. Basic and clinical research in cardiomyopathy genetics, mechanisms, screening, and treatment. Investigating novel agents for treatment of hypertrophic cardiomyopathy and new mechanisms in heart failure. Cardiovascular screening and genetics in competitive athletes, disease gene discovery in cardiomyopathy and rare disease. Informatics approaches to rare disease and multiomics. Molecular transducers of physical activity bioinformatics.

  • Leanne Williams

    Leanne Williams

    Vincent V.C. Woo Professor, Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and, by courtesy, of Psychology

    Current Research and Scholarly InterestsA revolution is under way in psychiatry. We can now understand mental illness as an expression of underlying brain circuit disruptions, shaped by experience and genetics. Our lab is defining precision brain circuit biotypes for depression, anxiety and related disorders. We integrate large amounts of brain imaging, behavioral and clinical data and computational approaches. Biotypes are used in personalized intervention studies with selective drugs, neuromodulation and exploratory therapeutics.

  • Nolan Williams

    Nolan Williams

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator) and, by courtesy, of Radiology (Neuroimaging and Neurointervention)

    BioNolan Williams, M.D. is an Associate Professor of Psychiatry and Behavioral Sciences at Stanford University and Director of the Stanford Brain Stimulation Lab. The long-term goals of his research program are to develop innovative technologies and therapeutics capable of modulating the neural circuitry disrupted in mood disorders, OCD, and other neuropsychiatric conditions. His team has been developing neuroimaging-based approaches to precisely target therapeutic delivery and predict treatment responses to therapeutic neuromodulation and psychedelics. Dr. Williams earned his M.D. and completed his dual residencies in neurology and psychiatry at the Medical University of South Carolina (MUSC). Triple board-certified in general neurology, general psychiatry, as well as behavioral neurology and neuropsychiatry, Dr. Williams brings a comprehensive background in clinical neuroscience to his role as a clinically active neuropsychiatrist. His expertise extends to the development and implementation of novel therapeutics, including devices and novel compounds, for central nervous system illnesses.
    Over the past decade, Dr. Williams’ laboratory alongside collaborators at Stanford University have pioneered multiple novel therapeutic and human neuroscience approaches. Notably, Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT) is the world's first non-invasive, rapid-acting neuromodulation approach for treatment-resistant depression. SAINT received FDA Breakthrough Device Designation Status (2021) and FDA Clearance (2022) and is the first psychiatric treatment to be covered by Medicare New Technology Add-On Payment (NTAP). As of April 2024, SAINT has been reimbursed for patients suffering from severe depression within inpatient psychiatric units. The SAINT technology is being deployed both clinically and in research protocols in laboratories and hospitals worldwide. Dr. Williams also has an expertise in psychedelic medicines for neuropsychiatric illness and is the first investigator to conduct mechanistic clinical trials exploring the neurobiological effects of ibogaine.
    His research accomplishments have garnered international recognition, earning prestigious awards from the Pritzker Neuropsychiatric Disorders Consortium, One Mind Institute, Wellcome Leap Foundation, International Brain Stimulation Conference, National Institute of Mental Health (Biobehavioral Research Award for Innovative New Scientists), Society of Biological Psychiatry (A. E. Bennett Award), along with multiple awards from the Brain Behavior Research Foundation (most notably the Gerald L. Klerman Award). His work has been featured in Scientific American, The New York Times, The Washington Post, USA Today, CBS Sunday Morning, and the TODAY Show.