Wu Tsai Neurosciences Institute


Showing 401-500 of 543 Results

  • Juan Rivas-Davila

    Juan Rivas-Davila

    Associate Professor of Electrical Engineering and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsModern applications demand power capabilities beyond what is presently achievable. High performance systems need high power density and bandwidth that are difficult to achieve.
    Power density can be improved with better semiconductors and passive componets, and by reducing the energy storage requirements of the system. By dramatically increasing switching frequency it is possible to reduce size of power converters. I'm interested in high performance/frequency circuits switching >10 MHz.

  • Tawna L. Roberts, OD, PhD

    Tawna L. Roberts, OD, PhD

    Associate Professor of Ophthalmology (Pediatric) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsOur research efforts are funded by grants from the National Eye Institute, Department of Defense, and various foundations to study vision development in infants and young children as well as binocular vision disorders in adolescents and adults with concussions. Our focus is to identify underlying mechanisms that will inform clinical treatment approaches and ultimately leading to the prevention of strabismus, amblyopia, and binocular vision disorders.

  • Carolyn Rodriguez

    Carolyn Rodriguez

    Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    BioDr. Carolyn Rodriguez is Associate Dean for Academic Affairs, Stanford University School of Medicine and a Consultation-Liaison Psychiatrist at the Palo Alto Veterans Affairs. As the Director of the Translational Therapeutics Lab and Professor in the Department of Psychiatry and Behavioral Sciences, Dr. Rodriguez leads studies investigating the brain basis of severe mental disorders. Her landmark clinical trials pioneer rapid-acting treatments for illnesses including Obsessive-Compulsive Disorder (OCD) and related disorders. Her NIH-, foundation-, and donor-funded mechanistic and clinical efficacy studies span targeted glutamatergic and opioid pathway pharmacotherapy, noninvasive brain stimulation, psychotherapy and suicide prevention. She is co-author of “Hoarding Disorder: A Comprehensive Clinical Guide,” published August 2022 by APA Publishing.

    Dr. Rodriguez also serves as Deputy Editor of The American Journal of Psychiatry, member of the Research Council of the American Psychiatric Association, member of Brain & Behavior Research Foundation Scientific Council, member of the American Foundation for Suicide Prevention Advisory Group, and Scientific and Clinical Advisory Board member of the International OCD Foundation. She has won several national awards, including the Presidential Early Career Award for Scientists and Engineers (PECASE). The PECASE recognizes investigators who are pursuing bold and innovative projects and is considered one of the highest honors in scientific research. Carolyn presented her research at the World Economic Forum in Davos and Fortune Brainstorm Health 2022 and her work has been highlighted by organizations including NPR, PBS, New York Times, ABC News, NBC News, Newsweek, Fortune, and Time.com. She contributes articles to Harvard Business Review and Huffington Post to share scientific findings with the public.

    Carolyn received her B.S. in Computer Science from Harvard University, followed by an M.D. from Harvard Medical School-M.I.T. and a Ph.D. in Neuroscience and Genetics from Harvard Medical School. Born in San Juan, Puerto Rico, she now lives with her husband and three children in Palo Alto.

  • Rajat Rohatgi

    Rajat Rohatgi

    Professor of Biochemistry and of Medicine (Oncology)

    Current Research and Scholarly Intereststhe overall goal of my laboratory is to uncover new regulatory mechanisms in signaling systems, to understand how these mechanisms are damaged in disease states, and to devise new strategies to repair their function.

  • Jessica Rose

    Jessica Rose

    Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsDr. Rose's research investigates neuromuscular mechanisms underlying cerebral palsy (CP) early brain and motor development in preterm children and . Research examines neonatal microstructural brain development on DTI and physiological correlates of motor function in preterm children. Dr. Rose served on the NIH Taskforce on Childhood Motor Disorders, the AACPDM Research Committee and Steering Committee to develop CDE for CP neuroimaging diagnostics, and serves on the Board of Directors of SBMT.

  • Daniel Rubin

    Daniel Rubin

    Professor of Biomedical Data Science, of Radiology (Integrative Biomedical Imaging Informatics at Stanford), of Medicine (Biomedical Informatics Research) and, by courtesy, of Ophthalmology

    Current Research and Scholarly InterestsMy research interest is imaging informatics--ways computers can work with images to leverage their rich information content and to help physicians use images to guide personalized care. Work in our lab thus lies at the intersection of biomedical informatics and imaging science.

  • Brian Rutt

    Brian Rutt

    Professor of Radiology (Radiological Sciences Lab), Emeritus

    Current Research and Scholarly InterestsMy research interests center on MRI research, including high-field and high-resolution MRI technology development as well as applications of advanced MRI techniques to studying the brain, cardiovascular system and cancer.

  • Debra Safer

    Debra Safer

    Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology-Adult)

    Current Research and Scholarly InterestsPrimary research interests include the nature and treatment of eating disorders
    (particularly bulimia nervosa and binge eating disorder), the development and treatment of obesity, and the development and treatment of problematic eating patterns in patients following bariatric surgery.

  • Manish Saggar

    Manish Saggar

    Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Interdisciplinary Brain Science Research)

    Current Research and Scholarly InterestsWe are a computational neuropsychiatry lab dedicated to developing computational methods to better understand brain’s overall dynamical organization in healthy and patient populations. We employ algorithms from a wide range of fields, including Applied Mathematics, Econometrics, Machine Learning, Biophysics, and Network Science.

  • Gregory Lee Sahlem

    Gregory Lee Sahlem

    Assistant Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology)

    BioDr.Sahlem is an Assistant Professor in the Department of Psychiatry and Behavioral Sciences. He is board-certified in general psychiatry and addictions medicine, as well as fellowship-trained in the research and clinical application of neuromodulation-based treatments including repetitive Transcranial Magnetic Stimulation (rTMS), electroconvulsive therapy (ECT), and vagus nerve stimulation (VNS). He additionally has advanced training in the treatment of mood and sleep disorders. In addition to being an active clinician, Dr.Sahlem is a member of the Stanford Brain Stimulation Lab and directs the Addictions Research Section of the Lab.

    Major areas of study for Dr.Sahlem include: The development of rTMS as a focused treatment for addictive disorders; the development of a novel form of ECT theorized to have reduced cognitive side effects, Focal Electrically Administered Seizure Therapy (FEAST), and; the further development of rTMS for the treatment of mood disorders.

  • Alberto Salleo

    Alberto Salleo

    Hong Seh and Vivian W. M. Lim Professor

    Current Research and Scholarly InterestsNovel materials and processing techniques for large-area and flexible electronic/photonic devices. Polymeric materials for electronics, bioelectronics, and biosensors. Electrochemical devices for neuromorphic computing. Defects and structure/property studies of polymeric semiconductors, nano-structured and amorphous materials in thin films. Advanced characterization techniques for soft matter.

  • Julia Salzman

    Julia Salzman

    Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology

    Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes

  • Niyatee Samudra, MD

    Niyatee Samudra, MD

    Clinical Assistant Professor, Neurology & Neurological Sciences

    BioDr. Samudra is a clinical assistant professor in the Department of Neurology and Neurological Sciences at Stanford University School of Medicine. She specializes in the care of patients with memory disorders and epilepsy. She has completed fellowship training in behavioral neurology at the University of California, San Francisco, as well as in epilepsy and clinical neurophysiology at Vanderbilt University Medical Center. Dr. Samudra is board-certified in neurology and in epilepsy.

    Her research interests include clinical trials in memory disorders and epilepsy; early neurophysiological markers of Alzheimer’s disease and related disorders; neuropsychiatric symptoms in neurodegenerative disorders; and the cognitive and neuropsychiatric consequences of epilepsy. She is interested in improving neurologic care for underserved populations.

    Dr. Samudra has published in the Journal of Alzheimer’s Disease; Current Neurology and Neuroscience Reports; Journal of the Neurological Sciences; Seizure; and Epilepsy and Behavior, among others. She is a member of the American Academy of Neurology.

  • Peter L. Santa Maria, MBBS, PhD

    Peter L. Santa Maria, MBBS, PhD

    Associate Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Bioengineering
    On Partial Leave from 08/01/2023 To 07/14/2024

    Current Research and Scholarly InterestsWe study chronic suppurative otitis media, a chronic biofilm infection of the middle ear predominantly involving pseudomonas and staph aureus. We are investigating mechanisms of sensory hearing loss, host microbe interactions and trialling novel therapeutics.

    Our work in tympanic membrane regeneration has entered clinical trials.

    Novel treatments for wound healing in intra oral wounds with potential applications to prevent post tonsillectomy wound healing and oral mucositis.

  • Robert Sapolsky

    Robert Sapolsky

    John A. and Cynthia Fry Gunn Professor, Professor of Biology, of Neurology and of Neurosurgery

    Current Research and Scholarly InterestsNeuron death, stress, gene therapy

  • Ansuman Satpathy

    Ansuman Satpathy

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsOur lab works at the interface of immunology, cancer biology, and genomics to study cellular and molecular mechanisms of the immune response to cancer. In particular, we are leveraging high-throughput genomic technologies to understand the dynamics of the tumor-specific T cell response to cancer antigens and immunotherapies (checkpoint blockade, CAR-T cells, and others). We are also interested in understanding the impact of immuno-editing on the heterogeneity and clonal evolution of cancer.

    We previously developed genome sequencing technologies that enable epigenetic studies in primary human immune cells from patients: 1) 3D enhancer-promoter interaction profiling (Nat Genet, 2017), 2) paired epigenome and T cell receptor (TCR) profiling in single cells (Nat Med, 2018), 3) paired epigenome and CRISPR profiling in single cells (Cell, 2019), and high-throughput single-cell ATAC-seq in droplets (Nature Biotech, 2019). We used these tools to study fundamental principles of the T cell response to cancer immunotherapy (PD-1 blockade) directly in cancer patient samples (Nature Biotech, 2019; Nat Med, 2019).

  • Alan F. Schatzberg

    Alan F. Schatzberg

    Kenneth T. Norris, Jr. Professor of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsBiological bases of depressive disorders;, glucocorticoid/dopamine interactions in delusional depression;, pharmacologic treatment of depressive disorders.

  • David Schneider

    David Schneider

    Professor of Microbiology and Immunology
    On Partial Leave from 03/24/2024 To 10/23/2024

    Current Research and Scholarly InterestsWe study innate immunity and microbial pathogenesis. We have been studying models for a variety of bacterial infections including: Listeria, Mycobacteria, Salmonella and Streptococcus as well as some fungi, malaria and viruses. Our current focus is to determine how we recover from infections.

  • Mark J. Schnitzer

    Mark J. Schnitzer

    Professor of Biology, of Applied Physics and of Neurosurgery (Adult Neurosurgery)

    Current Research and Scholarly InterestsThe goal of our research is to advance experimental paradigms for understanding normal cognitive and disease processes at the level of neural circuits, with emphasis on learning and memory processes. To advance these paradigms, we invent optical brain imaging techniques, several of which have been widely adopted. Our neuroscience studies combine these imaging innovations with behavioral, electrophysiological, optogenetic and computational methods, enabling a holistic approach to brain science.

  • Birgitt Schuele

    Birgitt Schuele

    Associate Professor (Research) of Pathology

    BioBirgitt Schüle, MD, is an Associate Professor in the Department of Pathology at Stanford University School of Medicine. Her research focuses on medical genetics and stem cell modeling to uncover disease mechanisms and pathways involved in neurodegeneration in Parkinson's disease and related disorders. She is dedicated to developing novel therapeutic strategies that contribute to the advancement of precision medicine.
    Dr. Schüle obtained her medical training from the Georg-August University Göttingen and Medical University Lübeck, Germany, between 1993 and 2001. She earned her doctoral degree in medicine (Dr. med.) in neurophysiology from the Georg-August University Göttingen in 2001. During her neurology internship from 2001 to 2002 at the Medical University of Lübeck under the guidance of Prof. Christine Klein. Subsequently, she pursued a postdoctoral fellowship in human genetics with Prof. Uta Francke at Stanford University School of Medicine from 2003 to 2005.
    From 2005 to 2019, Dr. Schüle demonstrated leadership in spearheading critical clinical research programs and establishing essential biospecimen repositories for neurogenetics, translational stem cell research, and brain donation at the Parkinson's Institute and Clinical Center.
    Currently, Dr. Schüle serves as the Associate Core Leader, Neuropathology, within the Stanford Alzheimer Research Center (ADRC). Her contributions to ADRC include genetic characterization, biobanking, and the establishment of a human induced pluripotent stem cell and post-mortem leptomeninges tissue bank. These resources are shared with the data and tissue repositories at the National Institutes of Health (NIH), facilitating collaborative research and advancing our understanding of neurodegenerative diseases.
    Dr. Schüle's expertise and dedication in the field of neurodegeneration contribute significantly to the advancement of medical knowledge. She is recognized as a respected member of the scientific community, playing an important role in the pursuit of effective treatments and precision medicine approaches.

  • Daniel Schwartz

    Daniel Schwartz

    Dean of the Graduate School of Education and the Nomellini & Olivier Professor of Educational Technology

    Current Research and Scholarly InterestsInstructional methods, transfer of learning and assessment, mathematical development, teachable agents, cognition, and cognitive neuroscience.

  • Neil Schwartz, MD, PhD

    Neil Schwartz, MD, PhD

    Clinical Professor, Neurology & Neurological Sciences
    Clinical Professor (By courtesy), Neurosurgery

    Current Research and Scholarly InterestsMy clinical interests involve inpatient and outpatient care of patients with neurovascular diseases, mostly ischemic and hemorrhagic stroke. I have a particular interest in cervical artery dissection, non-atherosclerotic vasculopathies, and stroke in the young.

  • Matthew P. Scott

    Matthew P. Scott

    Professor of Developmental Biology, Emeritus

    Current Research and Scholarly InterestsOur research has been focused on the genetic regulation of animal development and its relation to birth defects, cancer, and neurodegeneration. We studied mechanisms and functions of Hedgehog (Hh) signaling, which controls cell fates and growth, in the context of normal development and brain cancer. We studied a neurodegenerative disease, Niemann-Pick C syndrome, that affects intracellular organelle movements and sterol homeostasis. Due to Dr. Scott's new job, the lab is no longer active.

  • Vittorio Sebastiano

    Vittorio Sebastiano

    Associate Professor (Research) of Obstetrics and Gynecology (Reproductive and Stem Cell Biology)

    Current Research and Scholarly InterestsThe thread of Ariadne that connects germ cells, preimplatation development and pluripotent stem cells is the focus of my research, with a specific interest in human development. My long-term goals are: 1. Understanding the biology of germ cells and and their ability to sustain early preimplantation development; 2. Understanding the mechanisms that regulate very early cell fate decisions in human embryos; 3. Understanding the biology of derivation and maintenance of Pluripotent Stem Cells

  • Kawin Setsompop

    Kawin Setsompop

    Associate Professor of Radiology (Radiological Sciences Laboratory) and, by courtesy, of Electrical Engineering

    BioKawin Setsompop is an Associate Professor of Radiology and, by courtesy, of Electrical Engineering. His research focuses on the development of novel MRI acquisition methods, with the goal of creating imaging technologies that can be used to help better understand brain structure and function for applications in Healthcare and Health sciences. He received his Master’s degree in Engineering Science from Oxford University and his PhD in Electrical Engineering and Computer Science from MIT. Prior to joining Stanford, he was a postdoctoral fellow and subsequently a faculty at the A.A. Martinos center for biomedical imaging, MGH, as well as part of the Harvard and MIT faculty. His group has pioneered several widely-used MRI acquisition technologies, a number of which have been successfully translated into FDA-approved clinical products on Siemens, GE, Phillips, United Imaging and Bruker MRI scanners worldwide. These technologies are being used daily to study the brain in both clinical and neuroscientific fields.

  • Nigam H. Shah, MBBS, PhD

    Nigam H. Shah, MBBS, PhD

    Professor of Medicine (Biomedical Informatics) and of Biomedical Data Science

    Current Research and Scholarly InterestsWe analyze multiple types of health data (EHR, Claims, Wearables, Weblogs, and Patient blogs), to answer clinical questions, generate insights, and build predictive models for the learning health system.

  • Nirao Shah

    Nirao Shah

    Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator), of Neurobiology and, by courtesy, of Obstetrics and Gynecology

    Current Research and Scholarly InterestsWe study how our brains generate social interactions that differ between the sexes. Such gender differences in behavior are regulated by sex hormones, experience, and social cues. Accordingly, we are characterizing how these internal and external factors control gene expression and neuronal physiology in the two sexes to generate behavior. We are also interested in understanding how such sex differences in the healthy brain translate to sex differences in many neuro-psychiatric illnesses.

  • Mehrdad Shamloo

    Mehrdad Shamloo

    Professor (Research) of Neurosurgery and, by courtesy, of Neurology

    Current Research and Scholarly InterestsThe ultimate goal of the Shamloo laboratory is to rapidly advance our understanding of brain function at the molecular, cellular, circuit and behavioral levels, and to elucidate the pathological process underlying malfunction of the nervous system following injury and neurologic disorders such as stroke, Alzheimer's disease, Parkinson’s disease, and autism. We have been focusing on the noradrenergic system and approaches leading to restoration of brain adrenergic signaling in these disorders.

  • Carla Shatz

    Carla Shatz

    Sapp Family Provostial Professor, The Catherine Holman Johnson Director of Stanford Bio-X and Professor of Biology and of Neurobiology

    Current Research and Scholarly InterestsThe goal of research in the Shatz Laboratory is to discover how brain circuits are tuned up by experience during critical periods of development both before and after birth by elucidating cellular and molecular mechanisms that transform early fetal and neonatal brain circuits into mature connections. To discover mechanistic underpinnings of circuit tuning, the lab has conducted functional screens for genes regulated by neural activity and studied their function for vision, learning and memory.

  • Kang Shen

    Kang Shen

    Vincent V.C. Woo Director, Wu Tsai Neurosciences Institute, Frank Lee and Carol Hall Professor and Professor of Biology and of Pathology

    Current Research and Scholarly InterestsThe connectivity of a neuron (its unique constellation of synaptic inputs and outputs) is essential for its function. Neuronal connections are made with exquisite accuracy between specific types of neurons. How each neuron finds its synaptic partners has been a central question in developmental neurobiology. We utilize the relatively simple nervous system of nematode C. elegans, to search for molecules that can specify synaptic connections and understand the molecular mechanisms of synaptic as

  • Krishna Shenoy

    Krishna Shenoy

    Member, Bio-X

    Current Research and Scholarly InterestsWe conduct neuroscience, neuroengineering and translational research to better understand how the brain controls movement, and to design medical systems to assist people with paralysis. These are referred to as brain-machine interfaces (BMIs), brain-computer interfaces (BCIs) and intra-cortical neural prostheses. We conduct this research as part of our Neural Prosthetic Systems Lab (NPSL) and our Neural Prosthetics Translational Lab (NPTL), which I co-direct with Prof. Jaimie Henderson, M.D.

  • Laura Simons

    Laura Simons

    Professor of Anesthesiology, Perioperative and Pain Medicine (Pediatric)

    Current Research and Scholarly InterestsI am a Professor in the Department of Anesthesiology, Perioperative, and Pain Medicine at Stanford University School of Medicine and a clinical psychologist who evaluates and treats youth presenting with chronic pain in the Pediatric Pain Management Clinic (PPMC) at Stanford Children’s Health. My program of research aims to utilize a pain neuroscience psychology approach to gain a mechanistic understanding of cognitive and affective processes in pediatric pain, perform rigorous patient-oriented research that translates targeted assessment into mechanistically informed treatment approaches for optimal clinical care and leverage the ubiquity of digital health to enhance patient access and reach. Central to these goals are projects targeting adolescence and youth adults with chronic pain that encompass defining brain signatures of threat interpretation, evaluating the efficacy of graded exposure (NCT03699007), deriving a biosignature of improvement vs. persistence of pain and disability (NCT04285112), and evaluating the impact of virtual reality on pain rehabilitation (NCT04636177). These studies along with additional work examining the journey of pain care for youth with pain and their parents form a comprehensive research portfolio in the realm of understanding and treating chronic pain in young people. My long-term career goal is to lead a robust research program focusing on alleviating the suffering of youth and emerging adults with chronic pain.

  • Upinder Singh

    Upinder Singh

    Stanford Medicine Professor of Infectious Disease and Professor of Medicine (Infectious Diseases & Geographic Medicine) and of Microbiology and Immunology

    Current Research and Scholarly InterestsOur lab elucidates the molecular basis of pathogenesis of the protozoan parasite Entamoeba histolytica. We use genetic and genomic approaches to identify novel virulence determinants and to characterize the global epidemiology of the parasite.

  • Georgios Skiniotis

    Georgios Skiniotis

    Professor of Molecular and Cellular Physiology, of Structural Biology and of Photon Science

    BioThe Skiniotis laboratory seeks to resolve structural and mechanistic questions underlying biological processes that are central to cellular physiology. Our investigations employ primarily cryo-electron microscopy (cryoEM) and 3D reconstruction techniques complemented by biochemistry, biophysics and simulation methods to obtain a dynamic view into the macromolecular complexes carrying out these processes. The main theme in the lab is the structural biology of cell surface receptors that mediate intracellular signaling and communication. Our current main focus is the exploration of the mechanisms responsible for transmembrane signal instigation in cytokine receptors and G protein coupled receptor (GPCR) complexes.

  • Stephen J Smith

    Stephen J Smith

    Professor of Molecular and Cellular Physiology, Emeritus

    Current Research and Scholarly InterestsStephen Smith remains active in the computational microscopy field and is also currently using data science tools to explore new transcriptomic perspectives on signaling by neuropeptides and other neuromodulators in brains of diverse animal species. These exploration have unearthed evidence for a previous unrecognized ubiquity of local neuropeptide signaling and possible critical involvement of such signaling in memory engram formation.

  • Matthew Smuck, MD

    Matthew Smuck, MD

    Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsI direct the Wearable Health Lab at Stanford, investigating medical applications of mobile technology to improve musculoskeletal and neurologic disease detection, treatment and prevention.

  • Michael Snyder, Ph.D.

    Michael Snyder, Ph.D.

    Stanford W. Ascherman Professor of Genetics

    Current Research and Scholarly InterestsOur laboratory use different omics approaches to study a) regulatory networks, b) intra- and inter-species variation which differs primarily at the level of regulatory information c) human health and disease. For the later we have established integrated Personal Omics Profiling (iPOP), an analysis that combines longitudinal analyses of genomic, transcriptomic, proteomic, metabolomic, DNA methylation, microbiome and autoantibody profiles to monitor healthy and disease states

  • Raymond A. Sobel, M.D.

    Raymond A. Sobel, M.D.

    Professor of Pathology

    Current Research and Scholarly InterestsWe study cellular and molecular mechanisms of immune-mediated injury in CNS tissues that are affected in multiple sclerosis (MS). We study: 1) tissues of mice with EAE using histology and immunohistochemistry, 2) cross-recognition of neurons by antibodies against myelin proteolipid protein epitopes, and a distinct oligodendrogliopathy induced in mice by the non-protein amino acid azetidine (Aze), (which is found in the human diet); Aze-induced abnormalities mimic those in MS patient CNS tissues

  • Hyongsok Tom  Soh

    Hyongsok Tom Soh

    Professor of Radiology (Early Detection), of Electrical Engineering, of Bioengineering and, by courtesy, of Chemical Engineering

    BioDr. Soh received his B.S. with a double major in Mechanical Engineering and Materials Science with Distinction from Cornell University and his Ph.D. in Electrical Engineering from Stanford University. From 1999 to 2003, Dr. Soh served as the technical manager of MEMS Device Research Group at Bell Laboratories and Agere Systems. He was a faculty member at UCSB before joining Stanford in 2015. His current research interests are in analytical biotechnology, especially in high-throughput screening, directed evolution, and integrated biosensors.

  • Olav Solgaard

    Olav Solgaard

    Director, Edward L. Ginzton Laboratory and Robert L. and Audrey S. Hancock Professor in the School of Engineering

    BioThe Solgaard group focus on design and fabrication of nano-photonics and micro-optical systems. We combine photonic crystals, optical meta-materials, silicon photonics, and MEMS, to create efficient and reliable systems for communication, sensing, imaging, and optical manipulation.

  • Ivan Soltesz

    Ivan Soltesz

    James R. Doty Professor of Neurosurgery and Neurosciences

    BioIvan Soltesz received his doctorate in Budapest and conducted postdoctoral research at universities at Oxford, London, Stanford and Dallas. He established his laboratory at the University of California, Irvine, in 1995. He became full Professor in 2003, and served as department Chair from 2006 to July 2015. He returned to Stanford in 2015 as the James R. Doty Professor of Neurosurgery and Neurosciences at Stanford University School of Medicine. His major research interest is focused on neuronal microcircuits, network oscillations, cannabinoid signaling and the mechanistic bases of circuit dysfunction in epilepsy.
    His laboratory employs a combination of closely integrated experimental and theoretical techniques, including closed-loop in vivo optogenetics, paired patch clamp recordings, in vivo electrophysiological recordings from identified interneurons in awake mice, 2-photon imaging, machine learning-aided 3D video analysis of behavior, video-EEG recordings, behavioral approaches, and large-scale computational modeling methods using supercomputers. He is the author of a book on GABAergic microcircuits (Diversity in the Neuronal Machine, Oxford University Press), and editor of a book on Computational Neuroscience in Epilepsy (Academic Press/Elsevier). He co-founded the first Gordon Research Conference on the Mechanisms of neuronal synchronization and epilepsy, and taught for five years in the Ion Channels Course at Cold Springs Harbor. He has over 30 years of research experience, with over 20 years as a faculty involved in the training of graduate students (total of 16, 6 of them MD/PhDs) and postdoctoral fellows (20), many of whom received fellowship awards, K99 grants, joined prestigious residency programs and became independent faculty.

  • David A. Spain, MD

    David A. Spain, MD

    David L. Gregg, MD Professor of General Surgery

    Current Research and Scholarly InterestsOur main areas of interest are
    1. clinical research in trauma and critical illness
    2. economics of this care
    3. PTSD and stress response after critical injury or illness

  • David Spiegel

    David Spiegel

    Jack, Lulu and Sam Willson Professor of Medicine

    Current Research and Scholarly InterestsDr. Spiegel's research program involves mind/body interactions, including cancer progression, the response to traumatic stress, and the effect of hypnosis on the perception of pain and anxiety.

  • Daniel Spielman

    Daniel Spielman

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsMy research interests are in the field of medical imaging, particularly magnetic resonance imaging and in vivo spectroscopy. Current projects include MRI and MRS at high magnetic fields and metabolic imaging using hyperpolarized 13C-labeled MRS.

  • Konstantina M. Stankovic, MD, PhD, FACS

    Konstantina M. Stankovic, MD, PhD, FACS

    Bertarelli Foundation Professor and Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsOur investigative efforts are organized along 3 research thrusts:
    1. Vestibular schwannoma: uncovering mechanisms of sensorineural hearing loss (SNHL) and identifying better therapies;
    2. High-resolution imaging of the inner ear;
    3. Novel sensing of and therapies for SNHL.
    Given the complex, multifaceted nature of these problems, our approach to them involves domain-specific customization and fusion of tools from molecular biology, systems neuroscience, biotechnology and otologic surgery.

  • Creed Stary

    Creed Stary

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Adult MSD) and, by courtesy, of Ophthalmology

    Current Research and Scholarly InterestsMechanisms promoting neuronal survival following cerebral ischemia-reperfusion injury; utilizing microRNA's to target multiple pathways to promote mitochondrial homeostasis and cell survival; anesthetic neurotoxicity; astrocyte-neuronal interaction

  • Kristen K. Steenerson, MD

    Kristen K. Steenerson, MD

    Clinical Assistant Professor, Otolaryngology (Head and Neck Surgery)
    Clinical Assistant Professor, Neurology & Neurological Sciences

    BioKristen Steenerson is a board-certified neurologist with fellowship training in otoneurology. After graduating cum laude from Claremont McKenna College where she was honored as an All-American lacrosse defensive player, she continued on to medical school at the University of Utah in Salt Lake City, Utah. After four years of excellent training and annual ski passes, she proceeded to the Mayo Clinic in Arizona for neurology residency. There, she discovered the beauty of the Sonoran Desert as well as an unmet need in balance disorders and vertigo, motivating her to pursue a fellowship in otoneurology at Barrow Neurological Institute. She joins Stanford with positions in both Otolaryngology--Head and Neck Surgery and Neurology with the goal of jointly addressing the junction of inner ear and brain disorders. Her specific interests include vestibular migraine, benign paroxysmal positional vertigo, Ménière's disease and international neurology.

  • Marcia L. Stefanick, Ph.D.

    Marcia L. Stefanick, Ph.D.

    Professor (Research) of Medicine (Stanford Prevention Research Center), of Obstetrics and Gynecology and, by courtesy, of Epidemiology and Population Health

    Current Research and Scholarly InterestsMarcia L. Stefanick, Ph.D is a Professor of Medicine Professor of Obstetrics and Gynecology, and by courtesy, Professor of Epidemiology and Population Health at Stanford University School of Medicine. Dr. Stefanick’s research focuses on chronic disease prevention (particularly, heart disease, breast cancer, osteoporosis, and dementia) in both women and men. She is currently the Principal Investigator the Women’s Health Initiative (WHI) Extension Study, having been the PI of the Stanford Clinical Center of the landmark WHI Clinical Trials and Observational Study since 1994 and Chair of the WHI Steering and Executive Committees from 1998-2011, as well as PI of the WHI Strong and Healthy (WHISH) Trial which is testing the hypothesis that a DHHS-based physical activity intervention, being delivered to a multi-ethnic cohort of about 24,000 WHI participants across the U.S., aged 68-99 when the trial started in 2015, will reduce major cardiovascular events over 8 years, compared to an equal number of “usual activity” controls. Dr. Stefanick is also PI of the Osteoporotic Study of Men (MrOS) which is continuing to conduct clinical assessments of bone and body composition in survivors of an original cohort of nearly 6000 men aged 65 and over in 2001. As founding Director of the Stanford Women’s Health and Sex Differences in Medicine (WHSDM, “wisdom”) Center, she plays a major role in promoting research and teaching on Sex and Gender in Human Physiology and Disease, Women’s Health and Queer Health and Medicine. Dr. Stefanick also plays major leadership roles at the Stanford School of Medicine, including as co-leader of the Population Sciences Program of the Stanford Cancer Institute, Stanford’s NCI-funded comprehensive cancer center.

    Dr. Stefanick obtained her B.A. in biology from the University of Pennsylvania, Philadelphia, PA (1974), then pursued her interest in hormone and sex difference research at the Oregon Regional Primate Research Center, after which she obtained her PhD in Physiology at Stanford University, focusing on reproductive physiology and neuroendocrinology, with exercise physiology as a secondary focus. Her commitment to human research led to a post-doctoral fellowship in Cardiovascular Disease Prevention at the Stanford Prevention Research Center, which has been her academic home for nearly 40 years.

  • Gary K. Steinberg, MD, PhD

    Gary K. Steinberg, MD, PhD

    Bernard and Ronni Lacroute-William Randolph Hearst Professor of Neurosurgery and Neurosciences and Professor, by courtesy, of Neurology

    Current Research and Scholarly InterestsOur laboratory investigates the pathophysiology and treatment of cerebral ischemia, and methods to restore neurologic function after stroke. Treatment strategies include brain hypothermia, stem cell transplantation and optogenetic stimulation. Our clinical research develops innovative surgical, endovascular and radiosurgical approaches for treating difficult intracranial aneurysms, complex vascular malformations and occlusive disease, including Moyamoya disease, as well as stem cell transplant.

  • Lawrence Steinman, MD

    Lawrence Steinman, MD

    George A. Zimmermann Professor and Professor of Pediatrics

    Current Research and Scholarly InterestsOur laboratory is dedicated to understanding the pathogenesis of autoimmune diseases, particularly multiple sclerosis. We have developed several new therapies for autoimmunity, including some in Phase 2 clinical trials, as well as one approved drug, natalizumab. We have developed microarray technology for detecting autoantibodies to myelin proteins and lipids. We employ a diverse range of molecular and celluar approaches to trying to understand multiple sclerosis.

  • Lars Steinmetz

    Lars Steinmetz

    Dieter Schwarz Foundation Endowed Professor and Professor of Genetics

    Current Research and Scholarly InterestsWe apply diverse genomic approaches to understand how genetic variation affects health and disease by: 1) functional and mechanistic analyses of gene regulation, 2) studies of meiotic recombination and inheritance, 3) analyses of genetic and environmental interactions, and 4) characterization of diseases in human cells and model organisms. We integrate wet lab and computational genomic, transcriptomic, proteomic and metabolic approaches, and develop technologies to enable personalized medicine.

  • Aaron F. Straight

    Aaron F. Straight

    Pfeiffer and Herold Families Professor, Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.

  • Thomas Sudhof

    Thomas Sudhof

    Avram Goldstein Professor in the School of Medicine, Professor of Neurosurgery and, by courtesy, of Neurology and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsInformation transfer at synapses mediates information processing in brain, and is impaired in many brain diseases. Thomas Südhof is interested in how synapses are formed, how presynaptic terminals release neurotransmitters at synapses, and how synapses become dysfunctional in diseases such as autism or Alzheimer's disease. To address these questions, Südhof's laboratory employs approaches ranging from biophysical studies to the electrophysiological and behavioral analyses of mutant mice.

  • Brian Suffoletto

    Brian Suffoletto

    Associate Professor of Emergency Medicine (Adult Clinical/Academic)

    Current Research and Scholarly InterestsDr. Suffoletto is an emergency physician and NIH-funded investigator with a focus on collecting novel forms of longitudinal and remote data to inform temporal risk prediction and inform just-in-time adaptive interventions

  • Edith Vioni Sullivan

    Edith Vioni Sullivan

    Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator)

    Current Research and Scholarly InterestsApplication of neuroimaging modalities and component process analysis of cognitive, sensory, and motor functions to identify brain structural and functional mechanisms disrupted in diseases affecting the brain: alcohol use disorder, HIV infection, dementia, and normal aging from adolescence to senescence.

  • Yang Sun, MD, PhD

    Yang Sun, MD, PhD

    Professor of Ophthalmology

    Current Research and Scholarly InterestsWe are interested in the role of inositol phosphatases in eye development and disease, using both animal models and human disease tissue. We are a translational laboratory seeking to understand the basic function of proteins as well as developing therapeutic strategies for clinical trials.

  • Trisha Suppes, MD, PhD

    Trisha Suppes, MD, PhD

    Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    Current Research and Scholarly InterestsLong-term treatment strategies for bipolar disorder, treatment for bipolar II disorder, use of treatment algorithms, and treatment of major depression.

  • Katrin J Svensson

    Katrin J Svensson

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsMolecular metabolism
    Protein biochemistry
    Cell biology and function
    Animal physiology

  • William Talbot

    William Talbot

    Mary and Dr. Salim Shelby Professor

    Current Research and Scholarly InterestsWe use genetic and cellular approaches to investigate the molecular basis of glial development and myelination in the zebrafish.

  • Longzhi Tan

    Longzhi Tan

    Assistant Professor of Neurobiology

    Current Research and Scholarly InterestsThe Tan Lab studies the single-cell 3D genome architectural basis of neurodevelopment and aging by developing the next generation of in vivo multi-omic assays and algorithms, and applying them to the human and mouse cerebellum.

  • Hua Tang

    Hua Tang

    Professor of Genetics and, by courtesy, of Statistics

    Current Research and Scholarly InterestsDevelop statistical and computational methods for population genomics analyses; modeling human evolutionary history; genetic association studies in admixed populations.

  • Peter Tass

    Peter Tass

    Professor of Neurosurgery

    BioDr. Peter Tass investigates and develops neuromodulation techniques for understanding and treating neurologic conditions such as Parkinson’s disease, epilepsy, dysfunction following stroke and tinnitus. He creates invasive and non-invasive therapeutic procedures by means of comprehensive computational neuroscience studies and advanced data analysis techniques. The computational neuroscience studies guide experiments that use clinical electrophysiology measures, such as high density EEG recordings and MRI imaging, and various outcome measures. He has pioneered a neuromodulation approach based on thorough computational modelling that employs dynamic self-organization, plasticity and other neuromodulation principles to produce sustained effects after stimulation. To investigate stimulation effects and disease-related brain activity, he focuses on the development of stimulation methods that cause a sustained neural desynchronization by an unlearning of abnormal synaptic interactions. He also performs and contributes to pre-clinical and clinical research in related areas.

  • Vivianne Tawfik

    Vivianne Tawfik

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Adult Pain)

    Current Research and Scholarly InterestsMy overall research interest is to understand how the immune system interacts with the nervous system after injury to promote the transition from acute to chronic pain. In my clinical practice I care for patients with persistent pain that often occurs after minor trauma such as fracture or surgery. Using basic science approaches including whole system immune phenotyping with mass cytometry and genetic manipulation of peripheral and central immune cells, we seek to dissect the temporal and tissue-specific contribution of these cells to either promotion or inhibition of healing.

  • Avnesh Thakor

    Avnesh Thakor

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsInterventional Radiologists can access almost any part of the human body without the need for conventional open surgical techniques. As such, they are poised to change the way patients can be treated, given they can locally deliver drug, gene, cell and cell-free therapies directly to affected organs using image-guided endovascular, percutaneous, endoluminal, and even using device implantation approaches

  • Suzanne Tharin

    Suzanne Tharin

    Associate Professor of Neurosurgery
    On Partial Leave from 10/16/2023 To 06/30/2024

    Current Research and Scholarly InterestsThe long-term goal of my research is the repair of damaged corticospinal circuitry. Therapeutic regeneration strategies will be informed by an understanding both of corticospinal motor neuron (CSMN) development and of events occurring in CSMN in the setting of spinal cord injury. MicroRNAs are small, non-coding RNAs that regulate the expression of “suites” of genes. The work in my lab seeks to identify microRNA controls over CSMN development and over the CSMN response to spinal cord injury.

  • Stuart Thompson

    Stuart Thompson

    Professor of Biology (Hopkins Marine Station)

    Current Research and Scholarly InterestsNeurobiology, signal transduction

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from protein engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational design.

  • Jeanne L. Tsai

    Jeanne L. Tsai

    Professor of Psychology

    Current Research and Scholarly InterestsMy research examines how culture shapes affective processes (emotions, moods, feelings) and the implications cultural differences in these processes have for what decisions people make, how people think about health and illness, and how people perceive and respond to others in an increasingly multicultural world.

  • Richard Tsien

    Richard Tsien

    George D. Smith Professor, Emeritus

    Current Research and Scholarly InterestsWe study synaptic communication between brain cells with the goal of understanding neuronal computations and memory mechanisms. Main areas of focus include: presynaptic calcium channels, mechanisms of vesicular fusion and recycling. Modulation of synaptic strength through changes in postsynaptic receptors and dendritic morphology. Signaling that links synaptic activity to nuclear transcription and local protein translation. Techniques include imaging, electrophysiology, molecular biology.

  • Jason Tucciarone, MD, PhD

    Jason Tucciarone, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology)

    BioJason Tucciarone MD, PhD is an Assistant Professor with Stanford School of Medicine’s Department of Psychiatry and Behavioral Sciences. He works collaboratively in the department’s Neuropsychiatry clinic and his clinical focus includes treating patients with diverse and complex presentations at the interface of psychiatry and neurology with particular interest in functional neurological disorders. He sees a small cohort of psychotherapy patients in Individual Psychotherapy Clinic. He also works weekend shifts on Stanford’s inpatient psychiatry units.

    As a neuroscientist, he is interested in preclinical models of mental illness and investigating new therapies for mood disorders and addiction. In particular, he is interested in defining new cell types and evolutionary conserved circuits in emotional processing centers of the brain with the hope of finding new entry points for novel therapeutics. Currently under the mentorship Dr Robert Malenka, he is using optogenetic, chemogenetic, neuroimaging and behavioral approaches in mouse models of addiction to uncover vulnerable brain circuitry in opioid use disorder. Under the mentorship of Dr Alan Schatzberg he is investigating the efficacy of buprenorphine augmentation to IV ketamine infusion at reducing suicidality in treatment resistant depression.

    Prior to training in psychiatry at Stanford’s research residency track Jason received his bachelor’s degree in biology and philosophy from Union College. He spent three years as a Post-Baccalaureate IRTA fellow at the National Institute of Neurological Disorders and Stroke investigating and developing MRI reportable contrast agents to map neuronal connectivity. Following this he entered the Medical Scientist Training Program (MD/PhD) at the State University of NY Stony Brook University. There he completed a doctoral dissertation in neuroscience under the mentorship Dr. Josh Huang at Cold Spring Harbor Laboratory. His thesis work employed mouse genetic dissections of excitatory and inhibitory cortical circuits with a focus on the circuitry of chandelier inhibitory interneurons in prefrontal cortex.

    In addition to his research and clinical work, Jason is passionate about teaching, mentorship, and resident clinical supervision. He joined a working group early in his clinical residency to restructure trainee’s neuroscience education. He teaches introductory lectures in the neuroscience of addiction, PTSD, psychosis, and mood disorders. He also leads resident group supervision in their introductory psychodynamic psychotherapy clinical experience. He supervises medical students, residents, and clinical fellows in Neuropsychiatry clinic. Finally, to contribute to the Stanford clinical community, he leads a support group for Internal Medicine interns and residents.

  • Alexander Eckehart Urban

    Alexander Eckehart Urban

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and of Genetics

    Current Research and Scholarly InterestsComplex behavioral and neuropsychiatric phenotypes often have a strong genetic component. This genetic component is often extremely complex and difficult to dissect. The current revolution in genome technology means that we can avail ourselves to tools that make it possible for the first time to begin understanding the complex genetic and epigenetic interactions at the basis of the human mind.

  • Tulio Valdez, MD, MSc

    Tulio Valdez, MD, MSc

    Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Pediatrics

    BioDr. Tulio A Valdez is a surgeon scientist born and raised in Colombia with a subspecialty interest in Pediatric Otolaryngology. He attended medical school at Universidad Javeriana in Bogota Colombia before undertaking his residency in Otolaryngology, Head and Neck Surgery in Boston. He completed his Pediatric Otolaryngology Fellowship at Texas Children’s Hospital (2007), Houston and obtained his Master’s in Clinical and Translational Research at the University of Connecticut.

    Clinically, Dr. Valdez has an interest in pediatric sleep apnea. He has a special interest in the management of sinus disease in cystic fibrosis. Dr. Valdez has co-authored one textbook and numerous book chapters and scientific manuscripts. Dr. Valdez continues his clinical research in these areas, particularly with a focus on aerodigestive disorders.

    Scientifically, Dr. Valdez has developed various imaging methods to diagnose otitis media and cholesteatoma a middle ear condition that can lead to hearing loss. He was part of the Laser Biomedical Research Center at the Massachusetts Institute of Technology. His research includes novel imaging modalities to better diagnose ear infections one of the most common pediatric problems. His research has now expanded to include better intraoperative imaging modalities in pediatric patients to improve surgical outcomes without the need for radiation exposure. 

    Dr. Valdez believes in multi-disciplinary collaborations to tackle medical problems and has co-invented various medical devices and surgical simulation models.

  • Keith Van Haren, MD

    Keith Van Haren, MD

    Assistant Professor of Neurology (Pediatric Neurology) and of Pediatrics

    Current Research and Scholarly InterestsOur research group is dedicated to developing novel interventions for children at risk for neurodegenerative disorders. We are focused primarily on multiple sclerosis and X-linked adrenoleukodystrophy, both of which involve inflammatory and metabolic disruption to brain myelin. We are particularly interested in the role of childhood nutrient deficiencies in disease mechanisms and prevention.

  • Capucine Van Rechem

    Capucine Van Rechem

    Assistant Professor of Pathology (Pathology Research)

    Current Research and Scholarly InterestsMy long-term interest lies in understanding the impact chromatin modifiers have on disease development and progression so that more optimal therapeutic opportunities can be achieved. My laboratory explores the direct molecular impact of chromatin-modifying enzymes during cell cycle progression, and characterizes the unappreciated and unconventional roles that these chromatin factors have on cytoplasmic function such as protein synthesis.

  • Ross Daniel Venook

    Ross Daniel Venook

    Senior Lecturer of Bioengineering

    BioRoss is a Senior Lecturer in the Bioengineering department and he is the Associate Director for Engineering at the Stanford Byers Center for Biodesign.

    Ross primarily co-leads undergraduate laboratory courses at Stanford—an instrumentation lab (BIOE123) and an open-ended capstone design lab sequence (BIOE141A/B)—and he supports other courses and runs hands-on workshops in the areas of prototyping and systems engineering related to medical device innovation. He enjoys the unique challenges and constraints offered by biomedical engineering projects, and he delights in the opportunity for collaborative learning in a problem-solving environment.

    An Electrical Engineer by training (Stanford BS, MS, PhD), Ross’ graduate work focused on building and applying new types of MRI hardware for interventional and device-related uses. Following a Biodesign Innovation fellowship, Ross helped to start the MRI safety program at Boston Scientific Neuromodulation, where he worked for 15 years to enable safe MRI access for patients with implanted medical devices--including collaboration across the MRI safety community to create and improve international standards.

  • Hannes Vogel MD

    Hannes Vogel MD

    Professor of Pathology and of Pediatrics (Pediatric Genetics) and, by courtesy, of Neurosurgery, Neurology and of Comparative Medicine

    Current Research and Scholarly InterestsMy research interests include nerve and muscle pathology, mitochondrial diseases, pediatric neurooncology, and transgenic mouse pathology.

  • Douglas Vollrath

    Douglas Vollrath

    Professor of Genetics and, by courtesy, of Ophthalmology

    Current Research and Scholarly InterestsThe Vollrath lab works to uncover molecular mechanisms relevant to the health and pathology of the outer retina. We study metabolic and other cellular interactions between the glial-like retinal pigment epithelium (RPE) and adjacent photoreceptors, with the goals of understanding the pathogenesis of photoreceptor degenerative diseases such as age-related macular degeneration and retinitis pigmentosa, and developing therapies.

  • Jelena Vuckovic

    Jelena Vuckovic

    Jensen Huang Professor of Global Leadership, Professor of Electrical Engineering and, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsJelena Vuckovic’s research interests are broadly in the areas of nanophotonics, quantum and nonlinear optics. Her lab develops semiconductor-based photonic chip-scale systems with goals to probe new regimes of light-matter interaction, as well as to enable platforms for future classical and quantum information processing technologies. She also works on transforming conventional photonics with the concept of inverse design, where optimal photonic devices are designed from scratch using computer algorithms with little to no human input. Her current projects include quantum and nonlinear optics, cavity QED, and quantum information processing with color centers in diamond and in silicon carbide, heterogeneously integrated chip-scale photonic systems, and on-chip laser driven particle accelerators.

  • Yonatan Winetraub

    Yonatan Winetraub

    Instructor, Structural Biology

    Current Research and Scholarly InterestsMy interests span non-invasive imaging for early cancer diagnosis and space exploration.
    I'm focusing on utilizing Optical Coherence Tomography (OCT) and machine learning to create virtual histology tools to image cancer non invasively at a single cell resolution, allowing physicians to skip biopsy (read more about the research). Prior to my PhD at Stanford, I co-founded SpaceIL, a non-profit organization that launched the first private interplanetary robotic mission to the Moon launched 2019.

  • Anthony Wagner

    Anthony Wagner

    Lucie Stern Professor in the Social Sciences

    Current Research and Scholarly InterestsCognitive neuroscience of memory and cognitive/executive control in young and older adults. Research interests include encoding and retrieval mechanisms; interactions between declarative, nondeclarative, and working memory; forms of cognitive control; neurocognitive aging; functional organization of prefrontal cortex, parietal cortex, and the medial temporal lobe; assessed by functional MRI, scalp and intracranial EEG, and transcranial magnetic stimulation.

  • Rebecca D. Walker

    Rebecca D. Walker

    Clinical Associate Professor, Emergency Medicine

    Current Research and Scholarly InterestsInterests include international development in emergency care, healthcare disparities, wilderness medicine, human rights, administration

  • Dennis Wall

    Dennis Wall

    Professor of Pediatrics (Clinical Informatics), of Biomedical Data Science and, by courtesy, of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsSystems biology for design of clinical solutions that detect and treat disease

  • Brian A. Wandell

    Brian A. Wandell

    Isaac and Madeline Stein Family Professor and Professor, by courtesy, of Electrical Engineering, of Ophthalmology and at the Graduate School of Education

    Current Research and Scholarly InterestsModels and measures of the human visual system. The brain pathways essential for reading development. Diffusion tensor imaging, functional magnetic resonance imaging and computational modeling of visual perception and brain processes. Image systems simulations of optics and sensors and image processing. Data and computation management for reproducible research.

  • Bo Wang

    Bo Wang

    Assistant Professor of Bioengineering and, by courtesy, Developmental Biology

    Current Research and Scholarly InterestsResearch interests:
    (1) Systems biology of whole-body regeneration
    (2) Cell type evolution through the lens of single-cell multiomic sequencing analysis
    (3) Quantitative biology of brain regeneration
    (4) Regeneration of animal-algal photosymbiotic systems

  • Kevin Wang, MD, PhD

    Kevin Wang, MD, PhD

    Member, Bio-X

    Current Research and Scholarly InterestsThe Wang lab takes an interdisciplinary approach to studying fundamental mechanisms controlling gene expression in mammalian cells, and how epigenetic mechanisms such as DNA methylation, chromatin modifications, and RNA influence chromatin dynamics to affect gene regulation.

  • Shan X. Wang

    Shan X. Wang

    Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly InterestsShan Wang was named the Leland T. Edwards Professor in the School of Engineering in 2018. He directs the Center for Magnetic Nanotechnology and is a leading expert in biosensors, information storage and spintronics. His research and inventions span across a variety of areas including magnetic biochips, in vitro diagnostics, cancer biomarkers, magnetic nanoparticles, magnetic sensors, magnetoresistive random access memory, and magnetic integrated inductors.

  • Sui Wang, PhD

    Sui Wang, PhD

    Assistant Professor of Ophthalmology

    Current Research and Scholarly InterestsOur research focuses on unraveling the molecular mechanisms underlying retinal development and diseases. We employ genetic and genomic tools to explore how various retinal cell types, including neurons, glia, and the vasculature, respond to developmental cues and disease insults at the epigenomic and transcriptional levels. In addition, we investigate their interactions and collective contributions to maintain retinal integrity.

    1. Investigating retinal development:
    We utilize genetic tools and methods such as in vivo plasmid electroporation and CRISPR to dissect the roles of cis-regulatory elements and transcription factors in controlling retinal development.

    2. Understanding diabetes-induced cell-type-specific responses in the retina:
    Diabetes triggers a range of multicellular responses in the retina, such as vascular lesions, glial dysfunction, and neurodegeneration, all of which contribute to retinopathy. We delve into the detailed molecular mechanisms underlying these diabetes-induced cell-type-specific responses and the pathogenesis of diabetic retinopathy.

    3. Developing molecular tools for labeling and manipulation of specific cell types in vivo:
    Cis-regulatory elements, particularly enhancers, play pivotal roles in directing tissue- and cell-type-specific expression. Our interest lies in identifying enhancers that can drive cell type-specific expression in the retina and brain. We incorporate these enhancers into plasmid or AAV-based delivery systems, enabling precise labeling and manipulation of specific cell types in vivo.