Wu Tsai Neurosciences Institute


Showing 501-510 of 541 Results

  • Itschak Weissman

    Itschak Weissman

    Professor of Electrical Engineering

    BioTsachy's research focuses on Information Theory, Data Compression and Communications, Statistical Signal Processing, Machine Learning, the interplay between them, and their applications, with recent focus on applications to genomic data compression and processing. He is inventor of several patents and involved in several companies as member of the technical board. IEEE fellow, he serves on the board of governors of the information theory society as well as the editorial boards of the Transactions on Information Theory and Foundations and Trends in Communications and Information Theory. He is founding Director of the Stanford Compression Forum.

  • Marius Wernig

    Marius Wernig

    Professor of Pathology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsEpigenetic Reprogramming, Direct conversion of fibroblasts into neurons, Pluripotent Stem Cells, Neural Differentiation: implications in development and regenerative medicine

  • Robert West

    Robert West

    Professor of Pathology

    Current Research and Scholarly InterestsRob West, MD, PhD, is a Professor of Pathology at Stanford University Medical Center. He is a clinician scientist with experience in translational genomics research to identify new prognostic and therapeutic markers in cancer. His research focus is on the progression of neoplasia to carcinoma. His lab has developed spatially oriented in situ methods to study archival specimens. He also serves as a surgical pathologist specializing in breast pathology.

  • Gordon Wetzstein

    Gordon Wetzstein

    Associate Professor of Electrical Engineering and, by courtesy, of Computer Science

    BioGordon Wetzstein is an Associate Professor of Electrical Engineering and, by courtesy, of Computer Science at Stanford University. He is the leader of the Stanford Computational Imaging Lab and a faculty co-director of the Stanford Center for Image Systems Engineering. At the intersection of computer graphics and vision, artificial intelligence, computational optics, and applied vision science, Prof. Wetzstein's research has a wide range of applications in next-generation imaging, wearable computing, and neural rendering systems. Prof. Wetzstein is a Fellow of Optica and the recipient of numerous awards, including an NSF CAREER Award, an Alfred P. Sloan Fellowship, an ACM SIGGRAPH Significant New Researcher Award, a Presidential Early Career Award for Scientists and Engineers (PECASE), an SPIE Early Career Achievement Award, an Electronic Imaging Scientist of the Year Award, an Alain Fournier Ph.D. Dissertation Award as well as many Best Paper and Demo Awards.

  • Matthew Wheeler

    Matthew Wheeler

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsTranslational research in rare and undiagnosed diseases. Basic and clinical research in cardiomyopathy genetics, mechanisms, screening, and treatment. Investigating novel agents for treatment of hypertrophic cardiomyopathy and new mechanisms in heart failure. Cardiovascular screening and genetics in competitive athletes, disease gene discovery in cardiomyopathy and rare disease. Informatics approaches to rare disease and multiomics. Molecular transducers of physical activity bioinformatics.

  • Leanne Williams

    Leanne Williams

    Vincent V.C. Woo Professor, Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator) and, by courtesy, of Psychology

    Current Research and Scholarly InterestsA revolution is under way in psychiatry. We can now understand mental illness as an expression of underlying brain circuit disruptions, shaped by experience and genetics. Our lab is defining precision brain circuit biotypes for depression, anxiety and related disorders. We integrate large amounts of brain imaging, behavioral and clinical data and computational approaches. Biotypes are used in personalized intervention studies with selective drugs, neuromodulation and exploratory therapeutics.

  • Nolan Williams

    Nolan Williams

    Associate Professor of Psychiatry and Behavioral Sciences (Major Laboratories & Clinical Translational Neurosciences Incubator) and, by courtesy, of Radiology (Neuroimaging and Neurointervention)

    BioDr. Williams is an Associate Professor within the Department of Psychiatry and Behavioral Sciences and the Director of the Stanford Brain Stimulation Lab. Dr. Williams has a broad background in clinical neuroscience and is triple board-certified in general neurology, general psychiatry, as well as behavioral neurology & neuropsychiatry. In addition, he has specific training and clinical expertise in the development of brain stimulation methodologies. Themes of his work include (a) examining the use of spaced learning theory in the application of neurostimulation techniques, (b) development and mechanistic understanding of rapid-acting antidepressants, and (c) identifying objective biomarkers that predict neuromodulation responses in treatment-resistant neuropsychiatric conditions. Dr. Williams' work has resulted in an FDA clearance for the world's first non-invasive, rapid-acting neuromodulation approach for treatment-resistant depression. He has published papers in high-impact peer-reviewed journals including Brain, American Journal of Psychiatry, and the Proceedings of the National Academy of Science. Results from his studies have gained widespread attention in journals such as Science and New England Journal of Medicine Journal Watch as well as in the popular press and have been featured in various news sources including Time, Smithsonian, and Newsweek. Dr. Williams received two NARSAD Young Investigator Awards in 2016 and 2018 along with the 2019 Gerald L. Klerman Award. Dr. Williams received the National Institute of Mental Health Biobehavioral Research Award for Innovative New Scientists in 2020.

  • Thomas J. Wilson

    Thomas J. Wilson

    Clinical Associate Professor, Neurosurgery

    BioDr. Thomas J. Wilson was born in Omaha, Nebraska. He attended the University of Nebraska College of Medicine, earning his MD with highest distinction. While a medical student, he was awarded a Howard Hughes Medical Institute Research Training Fellowship and spent a year in the lab of Dr. Rakesh Singh at the University of Nebraska. He was also elected to the prestigious Alpha Omega Alpha Honor Medical Society. He completed his residency training in neurological surgery at the University of Michigan and was mentored by Dr. Lynda Yang and Dr. John McGillicuddy in peripheral nerve surgery. Following his residency, he completed a fellowship in peripheral nerve surgery at the Mayo Clinic in Rochester, Minnesota, working with Dr. Robert Spinner. He is now Clinical Associate Professor and Co-Director of the Center for Peripheral Nerve Surgery at Stanford University. He also holds a Master of Public Health (MPH) degree from the Bloomberg School of Public Health at Johns Hopkins University, with focused certificates in Clinical Trials and Health Finance and Management. His research interests include peripheral nerve outcomes research, clinical trials advancing options for patients with peripheral nerve pathologies and spinal cord injuries, and translational research focused on improved imaging techniques to assist in diagnosing nerve pain and other peripheral nerve conditions. His clinical practice encompasses the treatment of all peripheral nerve pathologies, including entrapment neuropathies, nerve tumors, nerve injuries (including brachial plexus injuries, upper and lower extremity nerve injuries), and nerve pain. Dr. Wilson enjoys working in multi-disciplinary teams to solve complex problems of the peripheral nervous system. His wife, Dr. Monique Wilson, is a practicing dermatologist in the Bay Area.

  • Jeffrey J. Wine

    Jeffrey J. Wine

    Benjamin Scott Crocker Professor of Human Biology, Emeritus

    Current Research and Scholarly InterestsThe goal is to understand how a defective ion channel leads to the human genetic disease cystic fibrosis. Studies of ion channels and ion transport involved in gland fluid transport. Methods include SSCP mutation detection and DNA sequencing, protein analysis, patch-clamp recording, ion-selective microelectrodes, electrophysiological analyses of transmembrane ion flows, isotopic metho

  • Monte Winslow

    Monte Winslow

    Associate Professor of Genetics and of Pathology

    Current Research and Scholarly InterestsOur laboratory uses genome-wide methods to uncover alterations that drive cancer progression and metastasis in genetically-engineered mouse models of human cancers. We combine cell-culture based mechanistic studies with our ability to alter pathways of interest during tumor progression in vivo to better understand each step of metastatic spread and to uncover the therapeutic vulnerabilities of advanced cancer cells.