School of Earth, Energy and Environmental Sciences

Showing 1-31 of 31 Results

  • Greg Beroza

    Greg Beroza

    Wayne Loel Professor of Earth Science

    Current Research and Scholarly InterestsEarthquake seismology

  • Biondo Biondi

    Biondo Biondi

    Barney and Estelle Morris Professor

    Current Research and Scholarly InterestsResearch
    My students and I devise new algorithms to improve the imaging of reflection seismic data. Images obtained from seismic data are the main source of information on the structural and stratigraphic complexities in Earth's subsurface. These images are constructed by processing seismic wavefields recorded at the surface of Earth and generated by either active-source experiments (reflection data), or by far-away earthquakes (teleseismic data). The high-resolution and fidelity of 3-D reflection-seismic images enables oil companies to drill with high accuracy for hydrocarbon reservoirs that are buried under two kilometers of water and up to 15 kilometers of sediments and hard rock. To achieve this technological feat, the recorded data must be processed employing advanced mathematical algorithms that harness the power of huge computational resources. To demonstrate the advantages of our new methods, we process 3D field data on our parallel cluster running several hundreds of processors.

    I teach a course on seismic imaging for graduate students in geophysics and in the other departments of the School of Earth Sciences. I run a research graduate seminar every quarter of the year. This year I will be teaching a one-day short course in 30 cities around the world as the SEG/EAGE Distinguished Instructor Short Course, the most important educational outreach program of these two societies.

    Professional Activities
    2007 SEG/EAGE Distinguished Instructor Short Course (2007); co-director, Stanford Exploration Project (1998-present); founding member, Editorial Board of SIAM Journal on Imaging Sciences (2007-present); member, SEG Research Committee (1996-present); chairman, SEG/EAGE Summer Research Workshop (2006)

  • Jef Caers

    Jef Caers

    Professor of Geological Sciences and, by courtesy, of Geophysics

    Current Research and Scholarly InterestsMy research focuses on the exploration & exploitation of geological resources, from data acquisition to decision making under uncertainty and risk assessment.

  • Jon Claerbout

    Jon Claerbout

    Cecil H. and Ida M. Green Professor of Geophysics, Emeritus

    Current Research and Scholarly InterestsReflection Seismology

  • Eric Dunham

    Eric Dunham

    Associate Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.

  • William Ellsworth

    William Ellsworth

    Professor (Research) of Geophysics

    BioMy research interests can be broadly defined as the study of active faults, the earthquakes they generate and the physics of the earthquake source. A major objective of my work is to improve our knowledge of earthquake hazards through the application of physics-based understanding of the underlying processes. As Co-Director of the Stanford Center for Induced and Triggered Seismicity, my students, postdocs and I conduct multi-disciplinary studies into the causes and consequences of anthropogenic earthquakes in a wide variety of settings. I have also long been committed to earthquake risk reduction, specifically through the transfer of scientific understanding of the hazard to people, businesses, policymakers and government agencies. Before coming to Stanford in 2015, I was a research geophysicist at the U. S. Geological Survey in Menlo Park, California for more than 40 years where I focused on problems of seismicity, seismotectonics, probabilistic earthquake forecasting, and earthquake source processes

  • Lucia Gualtieri

    Lucia Gualtieri

    Assistant Professor of Geophysics

    BioLucia Gualtieri is an Assistant Professor of Geophysics at Stanford University. Before joining Stanford, she was a Postdoctoral Research Associate in the Department of Geosciences at Princeton University and a Postdoctoral Research Fellow at Lamont-Doherty Earth Observatory of Columbia University. Lucia earned her Ph.D. in Geophysics in 2014, as a dual degree from the Institut de Physique du Globe de Paris (France) and the University of Bologna (Italy). She obtained her M.Sc. in Geophysics in 2010 and her B.Sc. in Physics in 2008, both at the University of Bologna. Lucia is interested in a variety of research topics, and in tackling them under a theoretical, computational and observational point of view. Lucia’s main research interests are in solving problems related to emerging fields in seismology, like ambient seismic noise and seismic signals due to mass-wasting events. She is also interested in using seismic waves to scan the interior of our planet and in gaining insights on how the Earth's structure affects seismic records.

  • Jerry Harris

    Jerry Harris

    The Cecil H. and Ida M. Green Professor in Geophysics, Emeritus

    Current Research and Scholarly InterestsBiographical Information
    Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.

    My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.

    I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.

    Professional Activities
    I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG.

  • Simon Klemperer

    Simon Klemperer

    Professor of Geophysics and, by courtesy, of Geological Sciences

    Current Research and Scholarly InterestsI study the growth, tectonic evolution, and deformation of the continents. My research group undertakes field experiments in exemplary areas such as, currently, the Tibet plateau (formed by collision between Indian and Asia); the actively extending Basin-&-Range province of western North America (the Ruby Range Metamorphic Core Complex, NV, and the leaky transform beneath the Salton Trough, CA). We use active and passive seismic methods, electromagnetic recording, and all other available data!

  • Alexandra Konings

    Alexandra Konings

    Assistant Professor of Earth System Science and, by courtesy, of Geophysics & Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioAlexandra Konings leads the Remote Sensing Ecohydrology group, which studies interactions between the global carbon and water cycles. That is, her research studies how changes in hydrological conditions change ecosystems, and how this in turn feeds back to weather and climate. These interactions include studies of transpiration and root water uptake, photosynthesis, mortality, and fire processes, among others. To address these topics, the groups primarily uses the tools of model development and remote sensing (satellite) data, especially microwave remote sensing data of vegetation water content. Alex believes that a deep understanding of remote sensing techniques and how they can be used to create environmental datasets enables new opportunities for scientific insight and vice versa.

  • Robert Kovach

    Robert Kovach

    Professor of Geophysics, Emeritus

    Current Research and Scholarly InterestsEarthquake seismology, natural hazards, and ancient earthquakes and archaeology

  • Mathieu Lapôtre

    Mathieu Lapôtre

    Assistant Professor of Geological Sciences and, by courtesy, of Geophysics

    BioProf. Lapôtre leads the Earth & Planetary Surface Processes group. His research focuses on the physics behind sedimentary and geomorphic processes that shape planetary surfaces (including Earth's), and aims to untangle what landforms and rocks tell us about the past hydrology, climate, and habitability of planets.

  • Wendy Mao

    Wendy Mao

    Professor of Geological Sciences, of Photon Science and, by courtesy, of Geophysics

    Current Research and Scholarly InterestsUnderstanding the formation and evolution of planetary interiors; experimental mineral physics; materials in extreme environments.

  • Gerald Mavko

    Gerald Mavko

    Professor (Research) of Geophysics, Emeritus

    Current Research and Scholarly InterestsResearch
    I work to discover and understand the relationship between geophysical measurements and the rock and fluid properties that they sample in the Earth. My students and I have begun to understand the impact of rock type, porosity, pore fluids, temperature, and stress on seismic wave propagation and electromagnetic response. We are also working to quantify the links between geophysical measurements and the sedimentary and diagenetic processes that determine rock mineralogy and texture. Ultimately, this work allows us to better infer, from geophysical images, the composition and physical conditions at depth.

    I teach courses for graduate and undergraduate students on rock physics--the study of the physical properties of rocks and how they can be detected and mapped using seismic and electrical methods. This includes theory, laboratory measurements, and field data analysis. I also lead seminars in which students present and critique their ongoing research in rock physics.

    Professional Activities
    Associate chair, Department of Geophysics (2006-2008); distinguished lecturer, Society of Exploration Geophysicists (2006); honorary membership, Society of Exploration Geophysicists (2001); nominated for Reginald Fessenden Award, Society of Exploration Geophysicists (2000); School of Earth Sciences Excellence in Teaching Award (2000)

  • Tapan Mukerji

    Tapan Mukerji

    Professor (Research) of Energy Resources Engineering and, by courtesy, of Geophysics and of Geological Sciences

    Current Research and Scholarly InterestsMy students and I use theoretical, computational, and statistical models, to discover and understand fundamental relations between geophysical data and subsurface properties, to quantify uncertainty in our geomodels, and to address value of information for decision making under uncertainty.

  • Amos Nur

    Amos Nur

    Wayne Loel Professor of Earth Sciences, Emeritus

    Current Research and Scholarly InterestsRock physics, tectonophysics, fossil energy exploration, earthquake archaeology

  • Ayla Pamukcu

    Ayla Pamukcu

    Assistant Professor of Geological Sciences and, by courtesy, of Geophysics

    Current Research and Scholarly InterestsI have long been fascinated by magmas and volcanic eruptions, for reasons ranging from purely academic (trying to understand the magmatic construction of Earth’s crust) to purely practical (developing effective monitoring and mitigation strategies for volcanic eruptions). Consequently, my research revolves around understanding how, when, where, and why magmas are stored, evolve, and ultimately do (or do not!) erupt.

    Within this context, I focus on two main themes: (1) the temporal, chemical, and physical, evolution of magmas, and (2) the interplay between magma storage conditions in the crust and magmatic processes. I employ a multi-faceted approach to explore these topics, integrating data from multiple scales and perspectives; my studies capitalize on information contained in field relations, crystal and melt inclusion textures (sizes, shapes, positions), crystal and volcanic glass geochemistry, geochronology, phase-equilibria and numerical modeling, and experiments. As a function of this approach, I am also engaged in the development of novel methods to address petrologic problems in new, better, and more refined ways than is currently possible.

    A major focus of my research has been on supereruptions – gigantic explosive eruptions the likes of which we have never seen in recorded human history – but I am continually exploring other kinds of magmatic systems. I am currently particularly interested in the links (or lack thereof) between extrusive (i.e., erupted) and intrusive (i.e., unerupted) magmas, similarities/differences between large- and small-volume eruptions, and similarities/differences between magmas generated at different levels of the crust. I have also had a longstanding interest in the interactions and relationships between humans and their geologic surroundings (particularly volcanoes).

  • Laura Schaefer

    Laura Schaefer

    Assistant Professor of Geological Sciences and, by courtesy, of Geophysics

    Current Research and Scholarly Interestsearly Earth atmosphere; planetary differentiation; rocky exoplanet atmospheric chemistry; planetary interiors; atmosphere-interior exchange on Earth-like planets; planetary habitability; Venus atmospheric evolution; volcanic gases on Io and volatile loss

  • Dustin Schroeder

    Dustin Schroeder

    Associate Professor of Geophysics and Senior Fellow at the Woods Institute for the Environment

    BioMy research focuses on advancing the scientific and technical foundations of geophysical ice penetrating radar and its use in observing and understanding the interaction of ice and water in the solar system. I am primarily interested in the subglacial and englacial conditions of rapidly changing ice sheets and their contribution to global sea level rise. However, a growing secondary focus of my work is the exploration of icy moons. I am also interested in the development and application of science-optimized geophysical radar systems. I consider myself a radio glaciologist and strive to approach problems from both an earth system science and a radar system engineering perspective. I am actively engaged with the flow of information through each step of the observational science process; from instrument and experiment design, through data processing and analysis, to modeling and inference. This allows me to draw from a multidisciplinary set of tools to test system-scale and process-level hypotheses. For me, this deliberate integration of science and engineering is the most powerful and satisfying way to approach questions in Earth and planetary science.

  • Paul Segall

    Paul Segall

    The Cecil H. and Ida M. Green Professor of Geophysics

    Current Research and Scholarly InterestsResearch
    I study active earthquake and volcanic process through data collection, inversion, and theoretical modeling. Using methods such as precise Global Positioning System (GPS) positioning and Interferometric Synthetic Aperture Radar (InSAR) we are able to measure deformation in space and time and invert these data for the geometry of faults and magma chambers, and spatiotemporal variations in fault slip-rate and magma chamber dilation. The accumulation of shear strain in tectonic regions provides a direct measure of earthquake potential. Similarly, magma accumulation in the crust prior to eruptions causes measurable inflation. We use these data to develop and test models of active plate boundaries such as the San Andreas, and the Cascade and Japanese subduction zones, the nucleation of earthquakes, slow slip events, induced seismicity, and the physics of magma migration leading to volcanic eruptions. These physics-based models rely on principles and methodologies from solid and fluid dynamics.

    I teach introductory undergraduate classes in natural hazards and the prediction of volcanic eruptions, as well as graduate level courses on modeling earthquake and volcano deformation and geophysical inverse theory.

    Professional Activities
    James B. Macelwane Medal, American Geophysical Union (1990); fellow, American Geophysical Union (1990); fellow, Geological Society of America (1997); president, Tectonophysics Section, AGU (2002-04); U.S.G.S. Science of Earthquakes Advisory Committee (2002-06); California Earthquake Prediction Evaluation Committee (2003-07); chair, Plate Boundary Observatory Steering Committee (2003-06); N.S.F. Panel, Instruments and Facilities Program (1997-2000); associate editor, Journal of Geophysical Research (1984-87). William Smith Lecturer, Geological Society of London (2011). Charles A. Whitten Medal, American Geophysical Union (2014), National Academy of Sciences (2016)

  • Norman Sleep

    Norman Sleep

    Professor of Geophysics, Emeritus

    Current Research and Scholarly InterestsPhysics of large-scale processes in the Earth

  • Jenny Suckale

    Jenny Suckale

    Assistant Professor of Geophysics and, by courtesy, of Civil and Environmental Engineering and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioMy research focuses on understanding disaster risk and resilience. I approach this challenge both from a fundamental point of view by advancing our understanding of the processes that govern extreme events in different natural systems and from an applied point of view by working with private and public partners to increase community resilience using a scientific co-production approach. My research group specializes in the development of customized mathematical models that are testable against observational data from a broad spectrum of scales. Our current research priorities span natural hazards like volcanic eruptions, climate hazards such as ice-sheet instability and permafrost disintegration, and hazards that arise from the interaction between natural processes and human interventions such as flooding in urban areas and induced earthquakes. I was recently awarded the Presidential Early Career Awards for Scientists and Engineers, the highest honor bestowed by the United States Government on science and engineering professionals in the early stages of their independent research careers.

  • Sonia Tikoo-Schantz

    Sonia Tikoo-Schantz

    Assistant Professor of Geophysics and, by courtesy, of Geological Sciences

    BioI utilize paleomagnetism and fundamental rock magnetism as tools to investigate problems in the planetary sciences. By studying the remanent magnetism recorded within rocks from differentiated planetary bodies, I can learn about core processes that facilitate the generation of dynamo magnetic fields within the Earth, Moon, and planetesimals. Determining the longevities and paleointensities of dynamo fields that initially magnetized rocks also provides insight into the long-term thermal evolution (i.e., effects of secular cooling) of planetary bodies. I also use paleomagnetism to understand impact cratering events, which are the most ubiquitous modifiers of planetary surfaces across the solar system. Impact events produce heat, shock, and sometimes hydrothermal systems that are all capable of resetting magnetization within impactites and target rocks via thermal, shock, and chemical processes. Therefore, I am able to use a combination of paleomagnetic and rock magnetic characterization to investigate shock pressures, temperatures, structural changes, and post-impact chemical alteration experienced by cratered planetary surfaces.

  • Tiziana Vanorio

    Tiziana Vanorio

    Senior Associate Dean of Educational Affairs, Associate Professor of Geological Sciences and, by courtesy, of Civil and Environmental Engineering and of Geophysics

    Current Research and Scholarly InterestsRock Physics, Fossil Energy Exploration, Volcanic and Geothermal Environments and Microseismicity

  • Howard Zebker

    Howard Zebker

    Professor of Electrical Engineering and of Geophysics

    Current Research and Scholarly InterestsResearch
    My students and I study the surfaces of Earth and planets using radar remote sensing methods. Our specialization is interferometric radar, or InSAR. InSAR is a technique to measure mm-scale surface deformation at fine resolution over wide areas, and much of our work follows from applying this technique to the study of earthquakes, volcanoes, and human-induced subsidence. We also address global environmental problems by tracking the movement of ice in the polar regions. whose ice mass balance affects sea level rise and global climate. We participate in NASA space missions such as Cassini, in which we now are examining the largest moon of Saturn, Titan, to try and deduce its composition and evolution. Our work includes experimental observation and modeling the measurements to best understand processes affecting the Earth and solar system. We use data acquired by spaceborne satellites and by large, ground-based radar telescopes to support our research.

    I teach courses related to remote sensing methods and applications, and how these methods can be used to study the world around us. At the undergraduate level, these include introductory remote sensing uses of the full electromagnetic spectrum to characterize Earth and planetary surfaces and atmospheres, and methods of digital image processing. I also teach a freshman and sophomore seminar course on natural hazards. At the graduate level, the courses are more specialized, including the math and physics of two-dimensional imaging systems, plus detailed ourses on imaging radar systems for geophysical applications.

    Professional Activities
    InSAR Review Board, NASA Jet Propulsion Laboratory (2006-present); editorial board, IEEE Proceedings (2005-present); NRC Earth Science and Applications from Space Panel on Solid Earth Hazards, Resources, and Dynamics (2005-present); Chair, Western North America InSAR (WInSAR) Consortium (2004-06); organizing committee, NASA/NSF/USGS InSAR working group; International Union of Radioscience (URSI) Board of Experts for Medal Evaluations (2004-05); National Astronomy and Ionospheric Center, Arecibo Observatory, Visiting Committee, (2002-04; chair, 2003-04); NASA Alaska SAR Facility users working group (2000-present); associate editor, IEEE Transactions on Geoscience and Remote Sensing (1998-present); fellow, IEEE (1998)

  • Mark Zoback

    Mark Zoback

    Benjamin M. Page Professor in Earth Sciences, Emeritus

    Current Research and Scholarly InterestsResearch
    I conduct research on in situ stress, fault mechanics, and reservoir geomechanics with an emphasis on shale gas, tight gas and tight oil production, the feasibility of long-term geologic storage of CO2 and the occurrence of induced and triggered earthquakes. I was one of the principal investigators of the SAFOD project in which a scientific research well was successfully drilled through the San Andreas Fault at seismogenic depth. I am the author of a textbook entitled Reservoir Geomechanics published in 2007 by Cambridge University Press, now in its sixth printing. I served on the National Academy of Energy committee investigating the Deepwater Horizon accident and the Secretary of Energy’s committee on shale gas development and environmental protection. I currently serve on a Canadian Council of Academies panel investigating the same topic.

    I teach both undergraduate and graduate students. Reservoir Geomechanics is a graduate class for students in the departments of Geophysics, GES, and ERE, and Tectonophysics, a graduate class for students principally in Geophysics and GES. I co-teach a Freshman class entitled Sustainability and Collapse with Professor Ursula Heise of the English Department. I also help lead two graduate seminars each week and frequently attend and participate in other seminars.

    Professional Activities
    Member, Canadian Council of Academies Committee on Shale Gas Development (2012-2013); Member, Secretary of Energy Committee on Shale Gas Development (2011-2012); Member, NAE Committee Investigating Deepwater Horizon Accident (2010-2011); President, American Rock Mechanics Association (2011-2013); Member of Board of RPSEA (2010-); Chair, Scientific Earthquake Studies Advisory Group of USGS (2007-2011); Advisory Board, Department of Geosciences, University of Arizona (2008-2013); Chair, Stanford Faculty Senate (1999-2000); Chair, Department of Geophysics (1991-97); Chair, Science Advisory Group, ICDP (1999-2006); President, Tectonophysics Section, AGU (1988-89)