School of Earth, Energy and Environmental Sciences


Showing 101-122 of 122 Results

  • Allegra Hosford Scheirer

    Allegra Hosford Scheirer

    Physical Sci Res Scientist

    Current Research and Scholarly InterestsResearch
    Allegra Hosford Scheirer is a research geophysicist at Stanford University, specializing in basin and petroleum system modeling. Her work is centered on the strong belief in the integration of geological, geochemical, and geophysical data in a unified working environment.

    Teaching
    She co-teaches courses and co-advises several graduate students with a focus on basin and petroleum system modeling and investigative methods for exploring conventional and unconventional hydrocarbons.

    Professional Activities
    Prior to joining Stanford, Allegra was a member of the Geophysical Unit of Menlo Park and the Energy Resources Program at the U.S. Geological Survey, where she constructed three-dimensional geologic models for use in the resource assessment process. Allegra has led and participated in numerous field programs at sea and in the United States. She is the editor of U.S.G.S. Professional Paper 1713 and a past Associate Editor of Journal of Geophysical Research.

  • Dustin Schroeder

    Dustin Schroeder

    Assistant Professor of Geophysics and, by courtesy, of Electrical Engineering and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioMy research focuses on advancing the scientific and technical foundations of geophysical ice penetrating radar and its use in observing and understanding the interaction of ice and water in the solar system. I am primarily interested in the subglacial and englacial conditions of rapidly changing ice sheets and their contribution to global sea level rise. However, a growing secondary focus of my work is the exploration of icy moons. I am also interested in the development and application of science-optimized geophysical radar systems. I consider myself a radio glaciologist and strive to approach problems from both an earth system science and a radar system engineering perspective. I am actively engaged with the flow of information through each step of the observational science process; from instrument and experiment design, through data processing and analysis, to modeling and inference. This allows me to draw from a multidisciplinary set of tools to test system-scale and process-level hypotheses. For me, this deliberate integration of science and engineering is the most powerful and satisfying way to approach questions in Earth and planetary science.

  • Paul Segall

    Paul Segall

    Professor of Geophysics

    Current Research and Scholarly InterestsResearch
    I study active earthquake and volcanic process through data collection, inversion, and theoretical modeling. Using methods such as precise Global Positioning System (GPS) positioning and Interferometric Synthetic Aperture Radar (InSAR) we are able to measure deformation in space and time and invert these data for the geometry of faults and magma chambers, and spatiotemporal variations in fault slip-rate and magma chamber dilation. The accumulation of shear strain in tectonic regions provides a direct measure of earthquake potential. Similarly, magma accumulation in the crust prior to eruptions causes measurable inflation. We use these data to develop and test models of active plate boundaries such as the San Andreas, and the Cascade and Japanese subduction zones, the nucleation of earthquakes, slow slip events, induced seismicity, and the physics of magma migration leading to volcanic eruptions. These physics-based models rely on principles and methodologies from solid and fluid dynamics.

    Teaching
    I teach introductory undergraduate classes in natural hazards and the prediction of volcanic eruptions, as well as graduate level courses on modeling earthquake and volcano deformation and geophysical inverse theory.

    Professional Activities
    James B. Macelwane Medal, American Geophysical Union (1990); fellow, American Geophysical Union (1990); fellow, Geological Society of America (1997); president, Tectonophysics Section, AGU (2002-04); U.S.G.S. Science of Earthquakes Advisory Committee (2002-06); California Earthquake Prediction Evaluation Committee (2003-07); chair, Plate Boundary Observatory Steering Committee (2003-06); N.S.F. Panel, Instruments and Facilities Program (1997-2000); associate editor, Journal of Geophysical Research (1984-87). William Smith Lecturer, Geological Society of London (2011). Charles A. Whitten Medal, American Geophysical Union (2014), National Academy of Sciences (2016)

  • Aditi Sheshadri

    Aditi Sheshadri

    Assistant Professor of Earth System Science, by courtesy, in Geophysics and Center Fellow, by courtesy, at the Woods Institute for the Environment

    BioI joined Stanford's Earth System Science department as an assistant professor 2018. Prior to this, I was a a Junior Fellow of the Simons Foundation in New York, and a postdoctoral research scientist at Columbia University’s Department of Applied Physics and Applied Math and the Lamont-Doherty Earth Observatory. I got my Ph.D. in Atmospheric Science at MIT's Department of Earth, Atmospheric, and Planetary Sciences, in the Program for Atmospheres, Oceans, and Climate, where I worked with R. Alan Plumb. I’m broadly interested in atmosphere and ocean dynamics, climate variability, and general circulation.

    I'm particularly interested in fundamental questions in atmospheric dynamics, which I address using a combination of theory, observations, and both idealized and comprehensive numerical experiments. Current areas of focus include the dynamics, variability, and change of the mid-latitude jets and storm tracks and the stratospheric polar vortex.

  • Norman Sleep

    Norman Sleep

    Professor of Geophysics, Emeritus

    Current Research and Scholarly InterestsPhysics of large-scale processes in the Earth

  • Erik Sperling

    Erik Sperling

    Assistant Professor of Geological Sciences and, by courtesy, of Biology and Center Fellow, by courtesy, at the Woods Institute for the Environment

    Current Research and Scholarly InterestsThe research interests in the Sperling Lab are Earth history and the evolution of life, and the interactions between the biosphere and the geosphere. As such this research can generally be considered paleontology, insofar as paleontology encompasses all aspects of the history of life.

    Consequently, we define our research agenda by the questions we are interested in, rather than the tools used. This research incorporates multiple lines of evidence, and multiple tools, to investigate questions in the history of life. These lines of evidence include fossil data, molecular phylogenetics, sedimentary geochemistry, and developmental and ecological data from modern organisms. Ultimately, the goal is to link environmental change with organismal and ecological response through the lens of physiology.

    Our field research takes place all over the world--current areas include:

    -NW Canada (Yukon and Northwest Territories): Research has been conducted on the early Neoproterozoic Fifteenmile Group, Cryogenian and Ediacaran Windermere Supergroup, and on the Ordovician-Devonian Road River Group in the southern Richardson Mountains
    -Southern Canadian Cordillera: Work here has focused on the early Cambrian Mural Formation and its soft-bodied fauna.
    -England and Wales: Cambrian-Silurian successions in the Welsh Basin
    -Namibia: Ediacaran Nama Group
    -Upwelling zones: We study the oxygen minimum zone offshore California as an analogue for ancient low-oxygen oceans.

  • Jonathan Stebbins

    Jonathan Stebbins

    Professor of Geological Sciences, Emeritus

    Current Research and Scholarly Interestsstructure and dynamics of crystalline, glassy, and molten inorganic materials and how these relate to geologically and technologically important properties and processes; solid state Nuclear Magnetic Resoance (NMR); mineralogy; igneous petrology; glass science

  • Jenny Suckale

    Jenny Suckale

    Assistant Professor of Geophysics and, by courtesy, of Civil and Environmental Engineering and Center Fellow, by courtesy, at the Woods Institute for the Environment
    On Leave from 04/01/2021 To 06/30/2021

    BioBefore joining Stanford in January 2014, I held a position as Lecturer in Applied Mathematics and as a Ziff Environmental Fellow at Harvard. I hold a PhD in Geophysics from MIT and a Master in Public Administration from the Harvard Kennedy School. Prior to joining graduate school, I worked as a scientific consultant for different international organizations aiming to reduce the impact of natural and environmental disasters in vulnerable communities. The goal of my research is to advance our basic understanding and predictive capabilities of complex multi-phase flows that are fundamental to Earth science. I pursue this goal by developing original computational methods customized for the problem at hand. The phenomena I explore range from the microscopic to the planetary scale and space a wide variety of geophysics systems such as volcanoes, glaciers, and magma oceans. I have taught both undergraduate and graduate courses in scientific, planetary evolution, and natural disasters. Since arriving at Stanford in January 2014, I have co-taught GES 118, Understanding Natural Hazards, Quantifying Risk, Increasing Resilience in Highly Urbanized Regions

  • Daniel Tartakovsky

    Daniel Tartakovsky

    Professor of Energy Resources Engineering

    Current Research and Scholarly InterestsEnvironmental fluid mechanics, Applied and computational mathematics, Biomedical modeling.

  • Hamdi Tchelepi

    Hamdi Tchelepi

    Professor of Energy Resources Engineering

    Current Research and Scholarly InterestsCurrent research activities include: (1) modeling unstable miscible and immiscible flows in heterogeneous formations, (2) developing multiscale formulations and scalable linear/nonlinear solution algorithms for multiphase flow in large-scale subsurface systems, and (3) developing stochastic approaches for quantifying the uncertainty associated with predictions of subsurface flow performance.

  • Leif Thomas

    Leif Thomas

    Associate Professor of Earth System Science and, by courtesy, of Civil and Environmental Engineering

    Current Research and Scholarly InterestsPhysical oceanography; theory and numerical modeling of the ocean circulation; dynamics of ocean fronts and vortices; upper ocean processes; air-sea interaction.

  • Sonia Tikoo-Schantz

    Sonia Tikoo-Schantz

    Assistant Professor of Geophysics and, by courtesy, of Geological Sciences

    BioI utilize paleomagnetism and fundamental rock magnetism as tools to investigate problems in the planetary sciences. By studying the remanent magnetism recorded within rocks from differentiated planetary bodies, I can learn about core processes that facilitate the generation of dynamo magnetic fields within the Earth, Moon, and planetesimals. Determining the longevities and paleointensities of dynamo fields that initially magnetized rocks also provides insight into the long-term thermal evolution (i.e., effects of secular cooling) of planetary bodies. I also use paleomagnetism to understand impact cratering events, which are the most ubiquitous modifiers of planetary surfaces across the solar system. Impact events produce heat, shock, and sometimes hydrothermal systems that are all capable of resetting magnetization within impactites and target rocks via thermal, shock, and chemical processes. Therefore, I am able to use a combination of paleomagnetic and rock magnetic characterization to investigate shock pressures, temperatures, structural changes, and post-impact chemical alteration experienced by cratered planetary surfaces.

  • Bradley Tolar

    Bradley Tolar

    Physical Science Research Scientist

    BioI am an aquatic microbiologist is interested in figuring out how microorganisms respond to environmental change and whether that determines "who" we find in oceans, estuaries, rivers, and lakes. My work focuses on seasonal dynamics of marine archaea (Thaumarchaeota) in Monterey Bay and floodplains in the western US, their role in the nitrogen cycle, and how these same organisms respond to stress in the laboratory. In addition to my research, I am passionate about mentoring students and participating in outreach programs to bring science to people of all ages, and am committed to making science more accessible to the public. I also work toward making STEM more diverse, equitable, and inclusive through mentoring and organizing programs among trainees.

  • Tiziana Vanorio

    Tiziana Vanorio

    Senior Associate Dean of Educational Affairs, Associate Professor of Geophysics and, by courtesy, of Civil and Environmental Engineering

    Current Research and Scholarly InterestsRock Physics, Fossil Energy Exploration, Volcanic and Geothermal Environments and Microseismicity

  • Peter Vitousek

    Peter Vitousek

    Clifford G. Morrison Professor in Population and Resource Studies, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Earth System Science
    On Leave from 04/01/2021 To 06/30/2021

    Current Research and Scholarly InterestsVitousek's research interests include: evaluating the global cycles of nitrogen and phosphorus, and how they are altered by human activity; understanding how the interaction of land and culture contributed to the sustainability of Hawaiian (and other Pacific) agriculture and society before European contact; and working to make fertilizer applications more efficient and less environmentally damaging (especially in rapidly growing economies)

  • Paula V. Welander

    Paula V. Welander

    Associate Professor of Environmental Earth System Science

    Current Research and Scholarly InterestsBiosynthesis of lipid biomarkers in modern microbes; molecular geomicrobiology; microbial physiology

  • Jane Kathryn Willenbring

    Jane Kathryn Willenbring

    Associate Professor of Geological Sciences

    BioJane Willenbring joined Stanford as an Associate Professor in the summer of 2020. Jane is a geologist who solves problems related to the Earth surface. Her research is primarily done to understand the evolution of the Earth’s surface - especially how landscapes are affected by tectonics, climate change, and life. She and her research group use geochemical techniques, high-resolution topographic data, field observations, and, when possible, couple these data to landscape evolution numerical models and ice sheet models. The geochemical tools she uses and develops often include cosmogenic nuclide systems, which provide powerful, novel methods to constrain rates of erosion and mineral weathering. Jane has also started to organize citizen science campaigns and apply basic science principles to problems of human health with an ultimate broader impact goal of cleaning up urban areas and environments impacted by agriculture. She received her B.Sc. with honors from the North Dakota State University where she was a McNair Scholar and in the NDSU scholars program. She holds a Masters degree from Boston University. Her Ph.D. is in Earth Science from Dalhousie University in Halifax, Nova Scotia Canada where she was a Killam Scholar. She was a Synthesis Postdoctoral Fellow through the National Center for Earth Surface Dynamics at the Saint Anthony Falls Lab at the University of Minnesota, and an Alexander von Humboldt Postdoctoral Fellow and then subsequently a Postdoctoral Researcher at the Helmholz GFZ Potsdam, Germany. Jane was previously an Associate Professor in the Geosciences Research Division and Thomas and Evelyn Page Chancellor's Endowed Faculty Fellow at Scripps Institution of Oceanography, UC San Diego where she was the director of the Scripps Cosmogenic Isotope Laboratory (SCI-Lab). She was also a tenure-track professor at the University of Pennsylvania. She will be a Stanford University Gabilan Faculty Fellow in 2021-2023. She is a Fellow of the Geological Society of America and was the inaugural recipient of the Marguerite T. Williams award from the American Geophysical Union.

  • Gabrielle Wong-Parodi

    Gabrielle Wong-Parodi

    Assistant Professor of Earth System Science and Center Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsMy research uses a decision science approach for informing the development of behaviorally realistic policies and strategies for meeting the challenge of global environmental change. I am primarily interested in understanding and enhancing adaptive responses to this change given the rich context of people's lives in order to promote long-term resiliency and sustainability.

  • Howard Zebker

    Howard Zebker

    Professor of Electrical Engineering and of Geophysics

    Current Research and Scholarly InterestsResearch
    My students and I study the surfaces of Earth and planets using radar remote sensing methods. Our specialization is interferometric radar, or InSAR. InSAR is a technique to measure mm-scale surface deformation at fine resolution over wide areas, and much of our work follows from applying this technique to the study of earthquakes, volcanoes, and human-induced subsidence. We also address global environmental problems by tracking the movement of ice in the polar regions. whose ice mass balance affects sea level rise and global climate. We participate in NASA space missions such as Cassini, in which we now are examining the largest moon of Saturn, Titan, to try and deduce its composition and evolution. Our work includes experimental observation and modeling the measurements to best understand processes affecting the Earth and solar system. We use data acquired by spaceborne satellites and by large, ground-based radar telescopes to support our research.

    Teaching
    I teach courses related to remote sensing methods and applications, and how these methods can be used to study the world around us. At the undergraduate level, these include introductory remote sensing uses of the full electromagnetic spectrum to characterize Earth and planetary surfaces and atmospheres, and methods of digital image processing. I also teach a freshman and sophomore seminar course on natural hazards. At the graduate level, the courses are more specialized, including the math and physics of two-dimensional imaging systems, plus detailed ourses on imaging radar systems for geophysical applications.

    Professional Activities
    InSAR Review Board, NASA Jet Propulsion Laboratory (2006-present); editorial board, IEEE Proceedings (2005-present); NRC Earth Science and Applications from Space Panel on Solid Earth Hazards, Resources, and Dynamics (2005-present); Chair, Western North America InSAR (WInSAR) Consortium (2004-06); organizing committee, NASA/NSF/USGS InSAR working group; International Union of Radioscience (URSI) Board of Experts for Medal Evaluations (2004-05); National Astronomy and Ionospheric Center, Arecibo Observatory, Visiting Committee, (2002-04; chair, 2003-04); NASA Alaska SAR Facility users working group (2000-present); associate editor, IEEE Transactions on Geoscience and Remote Sensing (1998-present); fellow, IEEE (1998)

  • Mark Zoback

    Mark Zoback

    Benjamin M. Page Professor in Earth Sciences, Emeritus

    Current Research and Scholarly InterestsResearch
    I conduct research on in situ stress, fault mechanics, and reservoir geomechanics with an emphasis on shale gas, tight gas and tight oil production, the feasibility of long-term geologic storage of CO2 and the occurrence of induced and triggered earthquakes. I was one of the principal investigators of the SAFOD project in which a scientific research well was successfully drilled through the San Andreas Fault at seismogenic depth. I am the author of a textbook entitled Reservoir Geomechanics published in 2007 by Cambridge University Press, now in its sixth printing. I served on the National Academy of Energy committee investigating the Deepwater Horizon accident and the Secretary of Energy’s committee on shale gas development and environmental protection. I currently serve on a Canadian Council of Academies panel investigating the same topic.

    Teaching
    I teach both undergraduate and graduate students. Reservoir Geomechanics is a graduate class for students in the departments of Geophysics, GES, and ERE, and Tectonophysics, a graduate class for students principally in Geophysics and GES. I co-teach a Freshman class entitled Sustainability and Collapse with Professor Ursula Heise of the English Department. I also help lead two graduate seminars each week and frequently attend and participate in other seminars.

    Professional Activities
    Member, Canadian Council of Academies Committee on Shale Gas Development (2012-2013); Member, Secretary of Energy Committee on Shale Gas Development (2011-2012); Member, NAE Committee Investigating Deepwater Horizon Accident (2010-2011); President, American Rock Mechanics Association (2011-2013); Member of Board of RPSEA (2010-); Chair, Scientific Earthquake Studies Advisory Group of USGS (2007-2011); Advisory Board, Department of Geosciences, University of Arizona (2008-2013); Chair, Stanford Faculty Senate (1999-2000); Chair, Department of Geophysics (1991-97); Chair, Science Advisory Group, ICDP (1999-2006); President, Tectonophysics Section, AGU (1988-89)