School of Earth, Energy & Environmental Sciences

Showing 1-10 of 12 Results

  • Mark Zoback

    Mark Zoback

    Benjamin M. Page Professor in Earth Sciences and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsResearch
    I conduct research on in situ stress, fault mechanics, and reservoir geomechanics with an emphasis on shale gas, tight gas and tight oil production, the feasibility of long-term geologic storage of CO2 and the occurrence of induced and triggered earthquakes. I was one of the principal investigators of the SAFOD project in which a scientific research well was successfully drilled through the San Andreas Fault at seismogenic depth. I am the author of a textbook entitled Reservoir Geomechanics published in 2007 by Cambridge University Press, now in its sixth printing. I served on the National Academy of Energy committee investigating the Deepwater Horizon accident and the Secretary of Energy’s committee on shale gas development and environmental protection. I currently serve on a Canadian Council of Academies panel investigating the same topic.

    I teach both undergraduate and graduate students. Reservoir Geomechanics is a graduate class for students in the departments of Geophysics, GES, and ERE, and Tectonophysics, a graduate class for students principally in Geophysics and GES. I co-teach a Freshman class entitled Sustainability and Collapse with Professor Ursula Heise of the English Department. I also help lead two graduate seminars each week and frequently attend and participate in other seminars.

    Professional Activities
    Member, Canadian Council of Academies Committee on Shale Gas Development (2012-2013); Member, Secretary of Energy Committee on Shale Gas Development (2011-2012); Member, NAE Committee Investigating Deepwater Horizon Accident (2010-2011); President, American Rock Mechanics Association (2011-2013); Member of Board of RPSEA (2010-); Chair, Scientific Earthquake Studies Advisory Group of USGS (2007-2011); Advisory Board, Department of Geosciences, University of Arizona (2008-2013); Chair, Stanford Faculty Senate (1999-2000); Chair, Department of Geophysics (1991-97); Chair, Science Advisory Group, ICDP (1999-2006); President, Tectonophysics Section, AGU (1988-89)

  • Howard Zebker

    Howard Zebker

    Professor of Electrical Engineering and of Geophysics

    Current Research and Scholarly InterestsResearch
    My students and I study the surfaces of Earth and planets using radar remote sensing methods. Our specialization is interferometric radar, or InSAR. InSAR is a technique to measure mm-scale surface deformation at fine resolution over wide areas, and much of our work follows from applying this technique to the study of earthquakes, volcanoes, and human-induced subsidence. We also address global environmental problems by tracking the movement of ice in the polar regions. whose ice mass balance affects sea level rise and global climate. We participate in NASA space missions such as Cassini, in which we now are examining the largest moon of Saturn, Titan, to try and deduce its composition and evolution. Our work includes experimental observation and modeling the measurements to best understand processes affecting the Earth and solar system. We use data acquired by spaceborne satellites and by large, ground-based radar telescopes to support our research.

    I teach courses related to remote sensing methods and applications, and how these methods can be used to study the world around us. At the undergraduate level, these include introductory remote sensing uses of the full electromagnetic spectrum to characterize Earth and planetary surfaces and atmospheres, and methods of digital image processing. I also teach a freshman and sophomore seminar course on natural hazards. At the graduate level, the courses are more specialized, including the math and physics of two-dimensional imaging systems, plus detailed ourses on imaging radar systems for geophysical applications.

    Professional Activities
    InSAR Review Board, NASA Jet Propulsion Laboratory (2006-present); editorial board, IEEE Proceedings (2005-present); NRC Earth Science and Applications from Space Panel on Solid Earth Hazards, Resources, and Dynamics (2005-present); Chair, Western North America InSAR (WInSAR) Consortium (2004-06); organizing committee, NASA/NSF/USGS InSAR working group; International Union of Radioscience (URSI) Board of Experts for Medal Evaluations (2004-05); National Astronomy and Ionospheric Center, Arecibo Observatory, Visiting Committee, (2002-04; chair, 2003-04); NASA Alaska SAR Facility users working group (2000-present); associate editor, IEEE Transactions on Geoscience and Remote Sensing (1998-present); fellow, IEEE (1998)

  • Christopher Zahasky

    Christopher Zahasky

    Ph.D. Student in Energy Resources Engineering

    Current Research and Scholarly InterestsReservoir engineering has long benefited from methods and technology developed in other fields of science and medicine. The proliferation of X-ray Computed Tomography, developed for medical imaging, led to incredible advancements in our understanding of single and multiphase flow in natural rocks. Positron Emission Tomography (PET), another medical imaging technique, has the potential to further advance our understanding of pore-scale flow processes. The goal of my work is to apply PET imaging techniques to better understand specific processes such as relative permeability in natural fractures and capillary heterogeneity in reservoir rocks. Initial experiments indicate that quantitative data analysis of PET imaging can be used to measure fracture aperture in naturally fractured caprock materials and can be used to measure time-dependent matrix diffusion of injected tracer. Future work will focus on method development and experimental measurements of multiphase flow in naturally fractures. Building on this work, PET will then be applied to imaging wetting and nonwetting phase flow behavior in multiphase flow experiments in reservoir rocks. Understanding the physics of these systems is vital for improving the confidence in the long term storage security of geologically stored carbon dioxide.

  • Mary Lou Zoback

    Mary Lou Zoback

    Adjunct Professor, Geophysics

    Current Research and Scholarly InterestsQuantifying natural hazard risk, risk reduction and mitigation strategies, developing metrics for measuring disaster resilience.