School of Earth, Energy & Environmental Sciences


Showing 1-50 of 114 Results

  • Wendy Mao

    Wendy Mao

    Associate Professor of Geological Sciences, of Photon Science and, by courtesy, of Geophysics

    Current Research and Scholarly InterestsUnderstanding the formation and evolution of planetary interiors; experimental mineral physics; materials in extreme environments.

  • Gerald M Mavko

    Gerald M Mavko

    Professor (Research) of Geophysics, Emeritus

    Current Research and Scholarly InterestsResearch
    I work to discover and understand the relationship between geophysical measurements and the rock and fluid properties that they sample in the Earth. My students and I have begun to understand the impact of rock type, porosity, pore fluids, temperature, and stress on seismic wave propagation and electromagnetic response. We are also working to quantify the links between geophysical measurements and the sedimentary and diagenetic processes that determine rock mineralogy and texture. Ultimately, this work allows us to better infer, from geophysical images, the composition and physical conditions at depth.

    Teaching
    I teach courses for graduate and undergraduate students on rock physics--the study of the physical properties of rocks and how they can be detected and mapped using seismic and electrical methods. This includes theory, laboratory measurements, and field data analysis. I also lead seminars in which students present and critique their ongoing research in rock physics.

    Professional Activities
    Associate chair, Department of Geophysics (2006-2008); distinguished lecturer, Society of Exploration Geophysicists (2006); honorary membership, Society of Exploration Geophysicists (2001); nominated for Reginald Fessenden Award, Society of Exploration Geophysicists (2000); School of Earth Sciences Excellence in Teaching Award (2000)

  • Gregory Beroza

    Gregory Beroza

    Wayne Loel Professor

    Current Research and Scholarly InterestsEarthquake seismology

  • Simon Klemperer

    Simon Klemperer

    Professor of Geophysics and, by courtesy, of Geological Sciences

    Current Research and Scholarly InterestsI study the growth, tectonic evolution, and deformation of the continents. My research group undertakes field experiments in exemplary areas such as, currently, the Tibet plateau (formed by collision between Indian and Asia); the actively extending Basin-&-Range province of western North America (the Ruby Range Metamorphic Core Complex, NV, and the leaky transform beneath the Salton Trough, CA). We use active and passive seismic methods, electromagnetic recording, and all other available data!

  • Paul Segall

    Paul Segall

    Professor of Geophysics

    Current Research and Scholarly InterestsResearch
    I study active earthquake and volcanic process through data collection, inversion, and theoretical modeling. Using techniques such as the Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) my students and I are able to measure deformation in space and time and invert these data for the geometry of faults and magma chambers, and spatiotemporal variations in fault slip-rate and magma chamber dilation. We use these results to develop and test models of active plate boundaries such as the San Andreas, and the Cascade subduction zone, the nucleation of earthquakes, slow slip events, and the physics of magma migration leading to volcanic eruptions.

    Teaching
    I teach introductory undergraduate classes in natural hazards and the prediction of volcanic eruptions, as well as graduate level courses on modeling earthquake and volcano deformation and geophysical inverse theory.

    Professional Activities
    James B. Macelwane Medal, American Geophysical Union (1990); fellow, American Geophysical Union (1990); fellow, Geological Society of America (1997); president, Tectonophysics Section, AGU (2002-04); U.S.G.S. Science of Earthquakes Advisory Committee (2002-06); California Earthquake Prediction Evaluation Committee (2003-07); chair, Plate Boundary Observatory Steering Committee (2003-06); N.S.F. Panel, Instruments and Facilities Program (1997-2000); associate editor, Journal of Geophysical Research (1984-87). William Smith Lecturer, Geological Society of London (2011). Charles A. Whitten Medal, American Geophysical Union (2014), National Academy of Sciences (2016)

  • Jerry Harris

    Jerry Harris

    The Cecil H. and Ida M. Green Professor in Geophysics

    Current Research and Scholarly InterestsBiographical Information
    Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.

    Research
    My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.

    Teaching
    I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.

    Professional Activities
    I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG.

  • Eric Dunham

    Eric Dunham

    Associate Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.

  • Mark Zoback

    Mark Zoback

    Benjamin M. Page Professor in Earth Sciences and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsResearch
    I conduct research on in situ stress, fault mechanics, and reservoir geomechanics with an emphasis on shale gas, tight gas and tight oil production, the feasibility of long-term geologic storage of CO2 and the occurrence of induced and triggered earthquakes. I was one of the principal investigators of the SAFOD project in which a scientific research well was successfully drilled through the San Andreas Fault at seismogenic depth. I am the author of a textbook entitled Reservoir Geomechanics published in 2007 by Cambridge University Press, now in its sixth printing. I served on the National Academy of Energy committee investigating the Deepwater Horizon accident and the Secretary of Energy’s committee on shale gas development and environmental protection. I currently serve on a Canadian Council of Academies panel investigating the same topic.

    Teaching
    I teach both undergraduate and graduate students. Reservoir Geomechanics is a graduate class for students in the departments of Geophysics, GES, and ERE, and Tectonophysics, a graduate class for students principally in Geophysics and GES. I co-teach a Freshman class entitled Sustainability and Collapse with Professor Ursula Heise of the English Department. I also help lead two graduate seminars each week and frequently attend and participate in other seminars.

    Professional Activities
    Member, Canadian Council of Academies Committee on Shale Gas Development (2012-2013); Member, Secretary of Energy Committee on Shale Gas Development (2011-2012); Member, NAE Committee Investigating Deepwater Horizon Accident (2010-2011); President, American Rock Mechanics Association (2011-2013); Member of Board of RPSEA (2010-); Chair, Scientific Earthquake Studies Advisory Group of USGS (2007-2011); Advisory Board, Department of Geosciences, University of Arizona (2008-2013); Chair, Stanford Faculty Senate (1999-2000); Chair, Department of Geophysics (1991-97); Chair, Science Advisory Group, ICDP (1999-2006); President, Tectonophysics Section, AGU (1988-89)

  • Jenny Suckale

    Jenny Suckale

    Assistant Professor of Geophysics and, by courtesy, of Civil and Environmental Engineering

    BioBefore joining Stanford in January 2014, I held a position as Lecturer in Applied Mathematics and as a Ziff Environmental Fellow at Harvard. I hold a PhD in Geophysics from MIT and a Master in Public Administration from the Harvard Kennedy School. Prior to joining graduate school, I worked as a scientific consultant for different international organizations aiming to reduce the impact of natural and environmental disasters in vulnerable communities.

    The goal of my research is to advance our basic understanding and predictive capabilities of complex multi-phase flows that are fundamental to Earth science. I pursue this goal by developing original computational methods customized for the problem at hand. The phenomena I explore range from the microscopic to the planetary scale and space a wide variety of geophysics systems such as volcanoes, glaciers, and magma oceans.

    I have taught both undergraduate and graduate courses in scientific, planetary evolution, and natural disasters. Since arriving at Stanford in January 2014, I have co-taught GES 118, Understanding Natural Hazards, Quantifying Risk, Increasing Resilience in Highly Urbanized Regions.

  • Clara Yoon

    Clara Yoon

    Ph.D. Student in Geophysics

    BioMy name is Clara Yoon, and I am a PhD candidate in earthquake seismology at Stanford University, advised by Prof. Greg Beroza and working closely with Prof. Bill Ellsworth.

    I have a unique, diverse combination of skills in geophysics, seismology, radar science, and software development that enables me to successfully approach interdisciplinary scientific problems and develop robust technical solutions.

    I am currently seeking employment as I expect to receive my PhD in geophysics from Stanford University in April 2018. I prefer to relocate to the Los Angeles area, although I am considering jobs anywhere in California.

    Please visit my professional website for more information about my research and skills: https://claraeyoon.wordpress.com

  • Biondo Biondi

    Biondo Biondi

    Professor of Geophysics

    Current Research and Scholarly InterestsResearch
    My students and I devise new algorithms to improve the imaging of reflection seismic data. Images obtained from seismic data are the main source of information on the structural and stratigraphic complexities in Earth's subsurface. These images are constructed by processing seismic wavefields recorded at the surface of Earth and generated by either active-source experiments (reflection data), or by far-away earthquakes (teleseismic data). The high-resolution and fidelity of 3-D reflection-seismic images enables oil companies to drill with high accuracy for hydrocarbon reservoirs that are buried under two kilometers of water and up to 15 kilometers of sediments and hard rock. To achieve this technological feat, the recorded data must be processed employing advanced mathematical algorithms that harness the power of huge computational resources. To demonstrate the advantages of our new methods, we process 3D field data on our parallel cluster running several hundreds of processors.

    Teaching
    I teach a course on seismic imaging for graduate students in geophysics and in the other departments of the School of Earth Sciences. I run a research graduate seminar every quarter of the year. This year I will be teaching a one-day short course in 30 cities around the world as the SEG/EAGE Distinguished Instructor Short Course, the most important educational outreach program of these two societies.

    Professional Activities
    2007 SEG/EAGE Distinguished Instructor Short Course (2007); co-director, Stanford Exploration Project (1998-present); founding member, Editorial Board of SIAM Journal on Imaging Sciences (2007-present); member, SEG Research Committee (1996-present); chairman, SEG/EAGE Summer Research Workshop (2006)

  • Howard Zebker

    Howard Zebker

    Professor of Electrical Engineering and of Geophysics

    Current Research and Scholarly InterestsResearch
    My students and I study the surfaces of Earth and planets using radar remote sensing methods. Our specialization is interferometric radar, or InSAR. InSAR is a technique to measure mm-scale surface deformation at fine resolution over wide areas, and much of our work follows from applying this technique to the study of earthquakes, volcanoes, and human-induced subsidence. We also address global environmental problems by tracking the movement of ice in the polar regions. whose ice mass balance affects sea level rise and global climate. We participate in NASA space missions such as Cassini, in which we now are examining the largest moon of Saturn, Titan, to try and deduce its composition and evolution. Our work includes experimental observation and modeling the measurements to best understand processes affecting the Earth and solar system. We use data acquired by spaceborne satellites and by large, ground-based radar telescopes to support our research.

    Teaching
    I teach courses related to remote sensing methods and applications, and how these methods can be used to study the world around us. At the undergraduate level, these include introductory remote sensing uses of the full electromagnetic spectrum to characterize Earth and planetary surfaces and atmospheres, and methods of digital image processing. I also teach a freshman and sophomore seminar course on natural hazards. At the graduate level, the courses are more specialized, including the math and physics of two-dimensional imaging systems, plus detailed ourses on imaging radar systems for geophysical applications.

    Professional Activities
    InSAR Review Board, NASA Jet Propulsion Laboratory (2006-present); editorial board, IEEE Proceedings (2005-present); NRC Earth Science and Applications from Space Panel on Solid Earth Hazards, Resources, and Dynamics (2005-present); Chair, Western North America InSAR (WInSAR) Consortium (2004-06); organizing committee, NASA/NSF/USGS InSAR working group; International Union of Radioscience (URSI) Board of Experts for Medal Evaluations (2004-05); National Astronomy and Ionospheric Center, Arecibo Observatory, Visiting Committee, (2002-04; chair, 2003-04); NASA Alaska SAR Facility users working group (2000-present); associate editor, IEEE Transactions on Geoscience and Remote Sensing (1998-present); fellow, IEEE (1998)

  • Norman Sleep

    Norman Sleep

    Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of large-scale processes in the Earth

  • Elena Serrano

    Elena Serrano

    Administrative Associate 3, Department of Geophysics - Geophysics

    Current Role at StanfordAdministrative Assistant to Prof. Mark Zoback and Natural Gas Initiative (NGI) & Stanford Center for Induced and Triggered Seismicity (SCITS) Affiliate Programs

  • Tiziana Vanorio

    Tiziana Vanorio

    Assistant Professor of Geophysics

    Current Research and Scholarly InterestsRock Physics, Fossil Energy Exploration, Volcanic and Geothermal Environments and Microseismicity

  • Claudia Baroni

    Claudia Baroni

    Program Manager, Department of Geophysics - Geophysics

    Current Role at StanfordProgram Manager for NGI (Natural Gas Initiative), SCITS (Stanford Center for Induced and Triggered Seimicity) and SEP (Stanford Exploration Project)

  • Gabriel Lotto

    Gabriel Lotto

    Ph.D. Student in Geophysics

    Current Research and Scholarly InterestsTsunamis are some of the most devastating natural disasters than can occur. In just the last 15 years, two tsunamis - the 2004 Indian Ocean tsunami and the 2011 Japan tsunami - killed hundreds of thousands of people and destroyed billions of dollars of property. Despite the importance of understanding these dangerous waves, there is still much we do not understand about how tsunamis are generated.

    The largest tsunamis are caused by megathrust earthquakes in subduction zones, when shallow coseismic slip between tectonic plates causes the seafloor to deform, uplifting the ocean surface and initiating a tsunami. Tsunamis can also be caused by earthquakes with smaller magnitude that are more efficient at generating tsunamis. These are called “tsunami earthquakes,” and they may result from slip along high angle splay faults or through a very compliant wedge of sedimentary materials in the trench.

    When an earthquake generates a tsunami, it also excites a wide range of fast-propagating seismic and ocean acoustic waves, some of which get trapped in the ocean and may contain valuable information about the size of the tsunami. These trapped waves could potentially be useful for improving tsunami early warning systems.

    To better understand these types of problems, we use numerical models that fully couple dynamic rupture on the fault to the elastic response of the earth and ocean. This means that we can model the full seismic, ocean acoustic, and tsunami wavefield that results from a subduction zone earthquake. This way we can explore and investigate some of the complexities of tsunami generation.

  • Mary Lou Zoback

    Mary Lou Zoback

    Adjunct Professor, Geophysics

    Current Research and Scholarly InterestsQuantifying natural hazard risk, risk reduction and mitigation strategies, developing metrics for measuring disaster resilience.

  • Lei Jin

    Lei Jin

    Ph.D. Student in Geophysics

    Current Research and Scholarly InterestsMECHANICS & PHYSICS:
    Computational poromechanics
    Computational contact mechanics
    Hydro-mechanical coupling (poroelasticity) in fractured porous media
    Reservoir geomechanics
    Reservoir depletion-induced faulting
    Fluid-induced seismicity, microseismicity and aseismicity (slow slip)
    Rupture dynamics and wave propagation

    DISCRETIZATION & COMPUTATION
    Galerkin, mixed and extended FEM
    FDM
    Preconditioner design for saddle-point systems

    DATA-DRIVEN:
    Deterministic-stochastic 3D discrete fracture networks building from microseismic data, fracture data, fault image data and in-situ stress data
    Natural fracture characterization
    Leak-off test analysis
    In-situ stress and rock strength inversion

  • Fatemeh Sadat Rassouli

    Fatemeh Sadat Rassouli

    Ph.D. Student in Geophysics

    BioI am a PhD candidate in the department of Geophysics. Currently, I am studying the time dependent behavior of carbonate and clay rich shales at different reservoir stress and temperature conditions.

    I obtained my M.Sc. in Mining Exploitation at University of Tehran. For my Master’s thesis I worked on new method of obtaining creep characteristics of soft rocks, called impression creep test. This new method greatly reduces time and material usually needed for conventional creep tests and makes it an economic mean to obtain creep characteristics of soft rocks.

    I conducted my experiments in different laboratories at University of Tehran, Tokai University of Japan, Toyota National College of Technology and in Material and Energy Research Center. Right now I am a research assistant in Stress and Crustal Mechanics Lab. at Stanford University.

  • Anthony Clark

    Anthony Clark

    Lab Manager, SRPL, Department of Geophysics - Geophysics

    BioTony is from NY, 'got schooled' in NY and PA, lived in Switzerland for 3 years and currently resides in the SF Bay Area (consistent with him working at Stanford).
    He loves pizza, ultimate frisbee, rock climbing, gardening...and most of all being a Husband and Father.