School of Earth, Energy & Environmental Sciences


Showing 21-40 of 701 Results

  • Gerald M Mavko

    Gerald M Mavko

    Professor (Research) of Geophysics, Emeritus

    Current Research and Scholarly InterestsResearch
    I work to discover and understand the relationship between geophysical measurements and the rock and fluid properties that they sample in the Earth. My students and I have begun to understand the impact of rock type, porosity, pore fluids, temperature, and stress on seismic wave propagation and electromagnetic response. We are also working to quantify the links between geophysical measurements and the sedimentary and diagenetic processes that determine rock mineralogy and texture. Ultimately, this work allows us to better infer, from geophysical images, the composition and physical conditions at depth.

    Teaching
    I teach courses for graduate and undergraduate students on rock physics--the study of the physical properties of rocks and how they can be detected and mapped using seismic and electrical methods. This includes theory, laboratory measurements, and field data analysis. I also lead seminars in which students present and critique their ongoing research in rock physics.

    Professional Activities
    Associate chair, Department of Geophysics (2006-2008); distinguished lecturer, Society of Exploration Geophysicists (2006); honorary membership, Society of Exploration Geophysicists (2001); nominated for Reginald Fessenden Award, Society of Exploration Geophysicists (2000); School of Earth Sciences Excellence in Teaching Award (2000)

  • Gregory Beroza

    Gregory Beroza

    Wayne Loel Professor

    Current Research and Scholarly InterestsEarthquake seismology

  • Celine Scheidt

    Celine Scheidt

    Sr Research Engineer, Energy Resources Engineering

    BioCéline Scheidt has worked extensively in uncertainty modeling, sensitivity analysis, geostatistics and in the use of distance-based methods in reservoir modeling. She obtained her PhD at Strasbourg University and the IFP (France) in applied mathematics, with a focus on the use of experimental design and geostatistical methods to model response surfaces.

  • Rosamond Naylor

    Rosamond Naylor

    William Wrigley Professor, Senior Fellow at the Woods Institute for the Environment and at the Freeman Spogli Institute for International Studies and Professor, by courtesy, of Economics

    Current Research and Scholarly InterestsResearch Activities:
    My research focuses on the environmental and equity dimensions of intensive food production systems, and the food security dimensions of low-input systems. I have been involved in a number of field-level research projects around the world and have published widely on issues related to climate impacts on agriculture, distributed irrigation systems for diversified cropping, nutrient use and loss in agriculture, biotechnology, aquaculture and livestock production, biofuels development, food price volatility, and food policy analysis.

    Teaching Activities:
    I teach courses on the world food economy, food and security, aquaculture science and policy, human society and environmental change, and food-water-health linkages. These courses are offered to graduate and undergraduate students through the departments of Earth System Science, Economics, History, and International Relations.

    Professional Activities:
    William Wrigley Professor of Earth Science (2015 - Present); Professor in Earth System Science (2009-present); Director, Stanford Center on Food Security and the Environment (2005-present); Associate Professor of Economics by courtesy (2000-present); William Wrigley Senior Fellow, Freeman Spogli Institute for International Studies and the Woods Institute for the Environment (2007-2015); Trustee, The Nature Conservancy CA program (2012-present); Member of the Scientific Advisory Board for the Beijer Institute for Ecological Economics in Stockholm (2011-present), for the Aspen Global Change Institute (2011-present), and for the Aldo Leopold Leadership Program (2012-present); Aldo Leopold Leadership Fellow in Environmental Science and Public Policy (1999); Pew Fellow in Conservation and the Environment (1994). Associate Editor for the Journal on Food Security (2012-present). Editorial board member for Aquaculture-Environment Interactions (2009-present) and Global Food Security (2012-present).

  • Simon Klemperer

    Simon Klemperer

    Professor of Geophysics and, by courtesy, of Geological Sciences

    Current Research and Scholarly InterestsI study the growth, tectonic evolution, and deformation of the continents. My research group undertakes field experiments in exemplary areas such as, currently, the Tibet plateau (formed by collision between Indian and Asia); the actively extending Basin-&-Range province of western North America (the Ruby Range Metamorphic Core Complex, NV, and the leaky transform beneath the Salton Trough, CA). We use active and passive seismic methods, electromagnetic recording, and all other available data!

  • Christopher Francis

    Christopher Francis

    Associate Professor of Earth System Science and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsMicrobial cycling of carbon, nitrogen, and metals in the environment; molecular geomicrobiology; marine microbiology; microbial diversity

  • Anthony Kovscek

    Anthony Kovscek

    Keleen and Carlton Beal Professor of Petroleum Engineering

    Current Research and Scholarly InterestsResearch
    I am interested in the recovery of unconventional hydrocarbon resources and mitigating carbon emissions from fossil fuels via geological sequestration of greenhouse gases. My research group and I examine the physics of flow through porous media at length scales that vary from the pore to the laboratory to the reservoir. The organizing themes are flow imaging to delineate the mechanisms of multiphase flow (oil, water, and gas) in porous media and the synthesis of models from experimental, theoretical, and field data. In all of our work, physical observations, obtained mainly from laboratory and field measurements, are interwoven with theory.

    Teaching
    My teaching interests center broadly around education of students to meet the energy challenges that we will face this century. I teach undergraduate courses that examine the interplay of energy use and environmental issues including renewable energy resources and sustainability. At the graduate level, I offer classes on enhanced oil recovery and the thermodynamics of hydrocarbon mixtures.

    Professional Activities
    Member, American Geophysical Union (2006); Editorial Board, SPE Reservoir Evaluation and Engineering (2006-present); Society of Petroleum Engineers (SPE) Distinguished Achievement Award for Petroleum Engineering Faculty (2006); School of Earth Sciences Award for Excellence in Teaching (1998); Earth Systems Program Executive Committee (2002-present); Woods Institute for Environment Energy Committee (2005-present); SPE Continuing Education Committee (2000-present, chair 2004-05); steering committee chair, SPE Forum, Enhanced Oil Recovery: What's Next? (2005-06); Editorial Board of the Journal of Petroleum Technology (2004-present) and SPE Reservoir Engineering and Evaluation (2006-present); member, Society of Petroleum Engineers, American Geophysical Union, and the American Chemical Society.

  • Paul Segall

    Paul Segall

    Professor of Geophysics

    Current Research and Scholarly InterestsResearch
    I study active earthquake and volcanic process through data collection, inversion, and theoretical modeling. Using techniques such as the Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) my students and I are able to measure deformation in space and time and invert these data for the geometry of faults and magma chambers, and spatiotemporal variations in fault slip-rate and magma chamber dilation. We use these results to develop and test models of active plate boundaries such as the San Andreas, and the Cascade subduction zone, the nucleation of earthquakes, slow slip events, and the physics of magma migration leading to volcanic eruptions.

    Teaching
    I teach introductory undergraduate classes in natural hazards and the prediction of volcanic eruptions, as well as graduate level courses on modeling earthquake and volcano deformation and geophysical inverse theory.

    Professional Activities
    James B. Macelwane Medal, American Geophysical Union (1990); fellow, American Geophysical Union (1990); fellow, Geological Society of America (1997); president, Tectonophysics Section, AGU (2002-04); U.S.G.S. Science of Earthquakes Advisory Committee (2002-06); California Earthquake Prediction Evaluation Committee (2003-07); chair, Plate Boundary Observatory Steering Committee (2003-06); N.S.F. Panel, Instruments and Facilities Program (1997-2000); associate editor, Journal of Geophysical Research (1984-87). William Smith Lecturer, Geological Society of London (2011). Charles A. Whitten Medal, American Geophysical Union (2014), National Academy of Sciences (2016)

  • Jerry Harris

    Jerry Harris

    The Cecil H. and Ida M. Green Professor in Geophysics

    Current Research and Scholarly InterestsBiographical Information
    Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.

    Research
    My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.

    Teaching
    I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.

    Professional Activities
    I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG.

  • Atilla Aydin

    Atilla Aydin

    Professor (Research) of Geological and Environmental Sciences, Emeritus

    Current Research and Scholarly InterestsFormation, geometric patterns and fluid flow properties of fractures and faults in a broad range of scales.

  • Tae Wook Kim

    Tae Wook Kim

    Phys Sci Res Assoc, Energy Resources Engineering

    Current Research and Scholarly InterestsResearch Field:
    Synthesis & characterization of thin inorganic/polymer membranes, adsorbents, and conductive
    membranes; Characterization of well-core & heavy oil; CO2 separation & sequestration process; Enhanced oil recovery method for offshore oil field; fuel cells system & hydrogen production.

  • Eric Dunham

    Eric Dunham

    Associate Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.

  • Martin Grove

    Martin Grove

    Professor (Research) of Geological Sciences

    Current Research and Scholarly InterestsResearch
    I study the evolution of the Earth's crust by undertaking petrologic and geochemically-based research that is grounded with fieldwork. I co-direct the Stanford-USGS ion probe laboratory and develop geochronologic methods to constrain crystallization, metamorphic, and metasomatic histories of the middle to deep crust. Similarly, because heat flow characteristically attends mass transfer during crustal deformation, I employ 40Ar/39Ar and (U-Th)/He thermochronology to extract thermal history information from minerals to constrain the timing and magnitude of fault slip as well as erosional and tectonic denudation. Finally, I am heavily involved in provenance studies to constrain aspects of crustal deformation and erosion that are only preserved in the sedimentary record.

  • Katharine (Kate) Maher

    Katharine (Kate) Maher

    Associate Professor of Earth System Science

    Current Research and Scholarly InterestsResearch
    Chemical reactions between fluids and minerals create the environments that are uniquely characteristic of Earth’s surface. For example, chemical weathering reactions support the growth of soils and organisms and regulate the flow of elements to the oceans. The rates of these reactions also control the release and storage of natural and human-derived contaminants. Over geologic timescales, mineral-fluid reactions have helped to maintain a mostly habitable planet. Over human timescales, these reactions will regulate our ability to use Earth’s resources, such as soils, waters, and minerals.

    My research focuses on the rates of reactions in different environments using a combination of geochemical tools, including isotope geochemistry, geochemical and hydrologic modeling, and geochronology in order to address the following themes: (1) defining the controls on mineral-fluid reactions rates in the environment (2) finding new approaches to use mineral-fluid reactions to safely store carbon dioxide in the subsurface; and (3) development of isotopic approaches to study mineral-fluid reactions in the environments of Earth’s past. To support these research themes, I have constructed a new mass spectrometer and clean lab facility capable of high precision geochemical and isotopic measurements, and teach a number of classes and short courses on reactive transport.

    Teaching
    My teaching focuses on introducing students to the questions and major challenges in low-temperature and environmental geochemistry, and the application of isotope geochemistry to environmental and geologic problems. In order to introduce incoming students to Earth surface processes, materials and geochemistry, I am also teaching a freshman seminar on forensic geoscience. At the graduate level, I offer classes on isotope geochemistry and modeling of environmental transformations and mass transfer processes (i.e., subsurface reactive transport).

  • David Lobell

    David Lobell

    Professor of Earth System Science and Senior Fellow at the Freeman Spogli Institute and the Woods Institute for the Environment

    Current Research and Scholarly InterestsWe study the interactions between food production, food security, and the environment using a range of modern tools.

  • Noah Diffenbaugh

    Noah Diffenbaugh

    Professor of Earth System Science and Kimmelman Family Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsDr. Noah S. Diffenbaugh is an Editor of the peer-review journal Geophysical Research Letters, and a Lead Author for the Intergovernmental Panel on Climate Change (IPCC). He is a recipient of the James R. Holton Award from the American Geophysical Union, a CAREER award from the National Science Foundation, and a Terman Fellowship from Stanford University. He has also been recognized as a Kavli Fellow by the U.S. National Academy of Sciences, and as a Google Science Communication Fellow.