School of Engineering


Showing 1-50 of 53 Results

  • Jeremy Bailenson

    Jeremy Bailenson

    Thomas More Storke Professor, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Education
    On Leave from 10/01/2023 To 06/30/2024

    BioJeremy Bailenson is founding director of Stanford University’s Virtual Human Interaction Lab, Thomas More Storke Professor in the Department of Communication, Professor (by courtesy) of Education, Professor (by courtesy) Program in Symbolic Systems, and a Senior Fellow at the Woods Institute for the Environment. He has served as Director of Graduate Studies in the Department of Communication for over a decade. He earned a B.A. from the University of Michigan in 1994 and a Ph.D. in cognitive psychology from Northwestern University in 1999. He spent four years at the University of California, Santa Barbara as a Post-Doctoral Fellow and then an Assistant Research Professor.

    Bailenson studies the psychology of Virtual and Augmented Reality, in particular how virtual experiences lead to changes in perceptions of self and others. His lab builds and studies systems that allow people to meet in virtual space, and explores the changes in the nature of social interaction. His most recent research focuses on how virtual experiences can transform education, environmental conservation, empathy, and health. He is the recipient of the Dean’s Award for Distinguished Teaching at Stanford. In 2020, IEEE recognized his work with “The Virtual/Augmented Reality Technical Achievement Award”.

    He has published more than 200 academic papers, spanning the fields of communication, computer science, education, environmental science, law, linguistics, marketing, medicine, political science, and psychology. His work has been continuously funded by the National Science Foundation for over 25 years.

    His first book Infinite Reality, co-authored with Jim Blascovich, emerged as an Amazon Best-seller eight years after its initial publication, and was quoted by the U.S. Supreme Court. His new book, Experience on Demand, was reviewed by The New York Times, The Wall Street Journal, The Washington Post, Nature, and The Times of London, and was an Amazon Best-seller.

    He has written opinion pieces for The Washington Post, The Wall Street Journal, Harvard Business Review, CNN, PBS NewsHour, Wired, National Geographic, Slate, The San Francisco Chronicle, TechCrunch, and The Chronicle of Higher Education, and has produced or directed six Virtual Reality documentary experiences which were official selections at the Tribeca Film Festival. His lab has exhibited VR in hundreds of venues ranging from The Smithsonian to The Superbowl.

  • Christine M Baker

    Christine M Baker

    Acting Assistant Professor, Civil and Environmental Engineering

    BioChristine M Baker will join the Civil and Environmental Engineering Department as an Assistant Professor in summer 2024. Baker’s research examines processes at the land-ocean interface, a highly dynamic region with fragile ecosystems, progressively vulnerable communities, and coastal hazards further magnified by a changing climate. Her research integrates laboratory experimentation with numerical modeling and remotely sensed field observations to build our fundamental understanding of hydrodynamics in coastal regions. The goals of her research include informing predictions of coastal water quality, shoreline evolution, and other coastal hazards and improving coastal resiliency in changing environments. Her ongoing and planned projects include studying wave transformation in shallow waters, surf-shelf transport driven by eddy and rip current dynamics, wave-driven sediment transport, and coupled hydro- and morphodynamics in the context of extreme events.

    Baker completed a bachelors degrees in Civil Engineering from Oregon State University and a Masters and PhD in Civil & Environmental Engineering from the University of Washington.

    www.baker-coastal-lab.com

  • Jack Baker

    Jack Baker

    Associate Dean for Faculty Affairs and Professor of Civil and Environmental Engineering

    BioJack Baker's research focuses on the use of probabilistic and statistical tools for modeling of extreme loads on structures. He has investigated probabilistic modeling of seismic hazards, improved characterization of earthquake ground motions, dynamic analysis of structures, prediction of the spatial extent of soil failures from earthquakes, and tools for modeling loads on spatially distributed infrastructure systems. Dr. Baker joined Stanford from the Swiss Federal Institute of Technology (ETH Zurich), where he was a visiting researcher in the Department of Structural Engineering. He received his Ph.D. in Structural Engineering from Stanford University, where he also earned M.S. degrees in Statistics and Structural Engineering. He has industry experience in seismic hazard assessment, ground motion selection, construction management, and modeling of catastrophe losses for insurance companies.

  • Nicholas Bambos

    Nicholas Bambos

    Richard W. Weiland Professor in the School of Engineering and Professor of Electrical Engineering

    BioNick Bambos is R. Weiland Professor in the School of Engineering at Stanford University, having a joint appointment in the Department of Electrical Engineering and the Department of Management Science & Engineering. He has been the Fortinet Founders Department Chair of the Management Science & Engineering Department (2016 – 20).

    He heads the Computer Systems Performance Engineering Lab (Perf-Lab) at Stanford, comprised of doctoral students and industry visitors engaged in various research projects, and was the Director (1999 – 2005) of the Stanford Networking Research Center (a research project of about $30M). He has published over 300 peer-reviewed research publications and graduated over 40 doctoral students (including two post-doctoral ones), who have moved on to leadership positions in academia, the Silicon Valley industries and technology startups, finance and venture capital, etc.

    His research interests are in architecture and high-performance engineering of computer systems and networks, as well as data analytics with an emphasis on medical and health-care analytics. His research contributions span the areas of networking and the Internet, cloud computing and data centers, multimedia streaming, computer security, digital health, etc. His methodological interests and contributions span the areas of network control, online task scheduling, routing and distributed processing, machine learning and artificial intelligence, etc.

    He received his Ph.D. (1989) in Electrical Engineering & Computer Sciences from the University of California at Berkeley. Before joining Stanford in 1996, he served as assistant professor (1989 – 95) and tenured associate professor (1995 – 96) of Electrical Engineering at the University of California at Los Angeles (UCLA).

    He has received several best research paper awards and has been the Cisco Systems Faculty Development Chair and the David Morgenthaler Faculty Scholar at Stanford. He has won the IBM Faculty Award, as well as the National Young Investigator Award and the Research Initiation Award from the National Science Foundation. He has been a Berkeley U.C. Regents Fellow, an E. C. Anthony Fellow, and a D. & S. Gale Fellow.

    He has served on various editorial boards of research journals, scientific boards of research labs, international technical and scientific committees, and technical review panels for networking and computing technologies. He has also served on corporate technical boards, as consultant and co-founder of technology start-up companies, and as expert witness in high-profile patent litigation and other legal cases involving information technologies.

  • Narges Baniasadi

    Narges Baniasadi

    Adjunct Professor

    BioDr. Narges Baniasadi is founder and executive director of Emergence program at Stanford. She is also Adjunct Professor with the BioEngineering department where she teaches purposeful entrepreneurship in the areas related to Health Equity and Sustainability. Narges has led multiple initiatives and businesses in the intersection of Technology and Life Sciences for more than a decade. She founded Bina, a pioneering Bioinformatics company, out of a decade of research at Stanford and UC Berkeley. Bina developed high performance computing platforms and AI solutions for cancer research and genomics analysis. Later, upon acquisition of Bina by Roche, she led the clinical software development and AI research as VP of Informatics at Roche Sequencing until 2018.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor and Professor, by courtesy, of Materials Science and Engineering and of Chemistry
    On Partial Leave from 04/01/2024 To 06/30/2024

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 80 US patents with a Google Scholar H-index 211.

    Bao is a member of the US National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.

    Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.

    Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001.

  • Stephen R. Barley

    Stephen R. Barley

    Weiland Professor in the School of Engineering, Emeritus

    Current Research and Scholarly InterestsTechnology's role in occupational and organizational change. Science and innovation in industrial settings. Organizational and occupational culture. Corporate power. Social network theory. Macro-organizational behavior.

  • David Barnett

    David Barnett

    Professor of Materials Science and Engineering and of Mechanical Engineering, Emeritus

    BioDislocations in Elastic Solids; Bulk, Surface and Interfacial Waves in Anisotropic Elastic Media; Mechanics of Piezoelectric and Piezomagnetic Materials, Modeling of transport in fuel cell materials and of AFM usage to characterize charge distributions and impedance of fuel cell media. He is the author of over 125 technical articles concerned with dislocations and waves in anisotropic elastic and piezoelectric media.

  • Clark Barrett

    Clark Barrett

    Professor (Research) of Computer Science

    Current Research and Scholarly InterestsAutomated reasoning; satisfiability modulo theories (SMT); formal methods;
    formal verification; verification of smart contracts; verification of neural
    networks; AI safety; security; hardware design productivity and verification.

  • Annelise E. Barron

    Annelise E. Barron

    Associate Professor of Bioengineering
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsBiophysical mechanisms of host defense peptides (a.k.a. antimicrobial peptides) and their peptoid mimics; also, molecular and cellular biophysics of human innate immune responses.

  • Mohsen Bayati

    Mohsen Bayati

    Carl and Marilynn Thoma Professor in the Graduate School of Business and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly Interests1) Healthcare management: I am interested in improving healthcare delivery using data-driven modeling and decision-making.

    2) Network models and message-passing algorithms: I work on graphical modeling ideas motivated from statistical physics and their applications in statistical inference.

    3) Personalized decision-making: I work on machine learning and statistical challenges of personalized decision-making. The problems that I have worked on are primarily motivated by healthcare applications.

  • David Beach

    David Beach

    Professor (Teaching) of Mechanical Engineering, Emeritus

    BioBeach teaches courses in the areas of design and manufacturing. Beach and Craig Milroy co-direct the Product Realization Laboratory which provides 1700 students annually with hands on experiences in product definition, conceptual design, detail design, and prototype creation. The PRL offers courses, mentors and tools in support of integrated designing and making. Pedagogically, Beach believes that creation of experience from which students (and teams of students) can interpret and internalize their own conclusions provides an excellent complement to content based teaching. His goal is to add strength in tacit knowledge which derives from the hands-on synthesis of design, prototype building, presentation and criticism.. The resulting judgment and instinct regarding materials, devices, materials transformation processes, and design process complement classical analytical engineering education to create superior engineers.

  • Gill Bejerano

    Gill Bejerano

    Professor of Developmental Biology, of Computer Science, of Pediatrics (Genetics) and of Biomedical Data Science

    Current Research and Scholarly Interests1. Automating monogenic patient diagnosis.
    2. The genomic signatures of independent divergent and convergent trait evolution in mammals.
    3. The logic of human gene regulation.
    4. The reasons for sequence ultraconservation.
    5. Cryptogenomics to bridge medical silos.
    6. Cryptogenetics to debate social injustice.
    7. Managing patient risk using machine learning.
    8. Understanding the flow of money in the US healthcare system.

  • Stacey Bent

    Stacey Bent

    Vice Provost, Graduate Edu & Postdoc Affairs, Jagdeep & Roshni Singh Professor in the School of Engineering, Professor of Energy Science Eng, Sr Fellow at Precourt & Professor, by courtesy, of Electrical Eng, Materials Sci Eng & Chemistry

    BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.

  • Michael Bernstein

    Michael Bernstein

    Associate Professor of Computer Science

    BioMichael Bernstein is an Associate Professor of Computer Science at Stanford University, where he is a Bass University Fellow and STMicroelectronics Faculty Scholar. His research in human-computer interaction focuses on the design of social computing systems. This research has won best paper awards at top conferences in human-computer interaction, including CHI, CSCW, ICWSM, and UIST, and has been reported in venues such as The New York Times, Science, Wired, and The Guardian. Michael has been recognized with an Alfred P. Sloan Fellowship, UIST Lasting Impact Award, and the Patrick J. McGovern Tech for Humanity Prize. He holds a bachelor's degree in Symbolic Systems from Stanford University, as well as a master's degree and a Ph.D. in Computer Science from MIT.

  • Sarah Billington

    Sarah Billington

    UPS Foundation Professor and Senior Fellow at the Woods Institute for the Environment

    BioMy research program focuses on the impact of building design and materials on human wellbeing. This work includes developing design tools to quantify nature experience in buildings, understanding and increasing wellbeing in and through affordable housing, and identifying the risk of forced labor in building material supply chains through fingerprinting and AI methods. The goal of my research program is to provide building occupants, designers, and owners tools to achieve built environments that meet their needs and to design interventions that support human wellbeing over time while preserving privacy. While no longer active in this area, my group has a long history of expertise in the design and evaluation of sustainable, durable construction materials including bio-based composites and ductile cement-based composites.

  • Lacramioara Bintu

    Lacramioara Bintu

    Assistant Professor of Bioengineering

    BioLacra Bintu is an Assistant Professor in the Bioengineering Department at Stanford. Her lab performs single-cell and high-throughput measurements of chromatin and gene regulation dynamics, and uses these data to develop predictive models and improve mammalian cell engineering.

    Lacra started working on the theory of gene regulation as an undergraduate with Jané Kondev from Brandeis University and Rob Phillips from Caltech. As a Physics PhD student in the lab of Carlos Bustamante at U.C. Berkeley, she used single-molecule methods to tease apart the molecular mechanisms of transcription through nucleosomes. She transitioned to studying the dynamics of epigenetic regulation in live cells during her postdoctoral fellowship with Michael Elowitz at Caltech.

  • Biondo Biondi

    Biondo Biondi

    Barney and Estelle Morris Professor
    On Leave from 09/01/2023 To 08/31/2024

    Current Research and Scholarly InterestsResearch
    My students and I devise new algorithms to improve the imaging of reflection seismic data. Images obtained from seismic data are the main source of information on the structural and stratigraphic complexities in Earth's subsurface. These images are constructed by processing seismic wavefields recorded at the surface of Earth and generated by either active-source experiments (reflection data), or by far-away earthquakes (teleseismic data). The high-resolution and fidelity of 3-D reflection-seismic images enables oil companies to drill with high accuracy for hydrocarbon reservoirs that are buried under two kilometers of water and up to 15 kilometers of sediments and hard rock. To achieve this technological feat, the recorded data must be processed employing advanced mathematical algorithms that harness the power of huge computational resources. To demonstrate the advantages of our new methods, we process 3D field data on our parallel cluster running several hundreds of processors.

    Teaching
    I teach a course on seismic imaging for graduate students in geophysics and in the other departments of the School of Earth Sciences. I run a research graduate seminar every quarter of the year. This year I will be teaching a one-day short course in 30 cities around the world as the SEG/EAGE Distinguished Instructor Short Course, the most important educational outreach program of these two societies.

    Professional Activities
    2007 SEG/EAGE Distinguished Instructor Short Course (2007); co-director, Stanford Exploration Project (1998-present); founding member, Editorial Board of SIAM Journal on Imaging Sciences (2007-present); member, SEG Research Committee (1996-present); chairman, SEG/EAGE Summer Research Workshop (2006)

  • Juan Blanch

    Juan Blanch

    Sr Research Engineer

    Current Research and Scholarly InterestsMy research focuses on the design of navigation integrity algorithms for safety critical applications (like air navigation and autonomous driving). I am interested in both the design of practical algorithms that provide the required safety margins, and in the theoretical limits on the performance of the integrity monitoring algorithms.

  • Jose Humberto Blanchet Mancilla

    Jose Humberto Blanchet Mancilla

    Professor of Management Science and Engineering

    BioJose Blanchet is a Professor of Management Science and Engineering (MS&E) at Stanford. Prior to joining MS&E, he was a professor at Columbia (Industrial Engineering and Operations Research, and Statistics, 2008-2017), and before that he taught at Harvard (Statistics, 2004-2008). Jose is a recipient of the 2010 Erlang Prize and several best publication awards in areas such as applied probability, simulation, operations management, and revenue management. He also received a Presidential Early Career Award for Scientists and Engineers in 2010. He worked as an analyst in Protego Financial Advisors, a leading investment bank in Mexico. He has research interests in applied probability and Monte Carlo methods. He is the Area Editor of Stochastic Models in Mathematics of Operations Research. He has served on the editorial board of Advances in Applied Probability, Bernoulli, Extremes, Insurance: Mathematics and Economics, Journal of Applied Probability, Queueing Systems: Theory and Applications, and Stochastic Systems, among others.

  • Kwabena Boahen

    Kwabena Boahen

    Professor of Bioengineering, of Electrical Engineering and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsBoahen's group analyzes neural behavior computationally to elucidate principles of neural design at the cellular, circuit, and systems levels; and synthesizes neuromorphic electronic systems that scale energy-use with size as efficiently as the brain does. This interdisciplinary research program bridges neurobiology and medicine with electronics and computer science, bringing together these seemingly disparate fields.

  • Alexandria Boehm

    Alexandria Boehm

    Professor of Civil and Environmental Engineering, of Oceans and Senior Fellow at the Woods Institute for the Environment

    BioI am interested in pathogens in the environment including their sources, fate, and transport in natural and engineered systems. I am interested in understanding of how pathogens are transmitted to humans through contact with water, feces, and contaminated surfaces. My research is focused on key problems in both developed and developing countries with the overarching goal of designing and testing novel interventions and technologies for reducing the burden of disease.

    I am also interested broadly in coastal water quality where my work addresses the sources, transformation, transport, and ecology of biocolloids - specifically fecal indicator organisms, DNA, pathogens, and phytoplankton - as well as sources and fate of nitrogen. This knowledge is crucial to formulating new management policies and engineering practices that protect human and ecosystem health at the coastal margins.

  • Jeannette Bohg

    Jeannette Bohg

    Assistant Professor of Computer Science

    BioJeannette Bohg is an Assistant Professor of Computer Science at Stanford University. She was a group leader at the Autonomous Motion Department (AMD) of the MPI for Intelligent Systems until September 2017. Before joining AMD in January 2012, Jeannette Bohg was a PhD student at the Division of Robotics, Perception and Learning (RPL) at KTH in Stockholm. In her thesis, she proposed novel methods towards multi-modal scene understanding for robotic grasping. She also studied at Chalmers in Gothenburg and at the Technical University in Dresden where she received her Master in Art and Technology and her Diploma in Computer Science, respectively. Her research focuses on perception and learning for autonomous robotic manipulation and grasping. She is specifically interesting in developing methods that are goal-directed, real-time and multi-modal such that they can provide meaningful feedback for execution and learning. Jeannette Bohg has received several awards, most notably the 2019 IEEE International Conference on Robotics and Automation (ICRA) Best Paper Award, the 2019 IEEE Robotics and Automation Society Early Career Award and the 2017 IEEE Robotics and Automation Letters (RA-L) Best Paper Award.

  • Dan Boneh

    Dan Boneh

    Cryptography Professor, Professor of Electrical Engineering and Senior Fellow at the Freeman Spogli Institute for International Studies

    BioProfessor Boneh heads the applied cryptography group and co-direct the computer security lab. Professor Boneh's research focuses on applications of cryptography to computer security. His work includes cryptosystems with novel properties, web security, security for mobile devices, and cryptanalysis. He is the author of over a hundred publications in the field and is a Packard and Alfred P. Sloan fellow. He is a recipient of the 2014 ACM prize and the 2013 Godel prize. In 2011 Dr. Boneh received the Ishii award for industry education innovation. Professor Boneh received his Ph.D from Princeton University and joined Stanford in 1997.

  • Ronaldo Borja

    Ronaldo Borja

    Professor of Civil and Environmental Engineering

    BioBorja works in computational mechanics, geomechanics, and geosciences. His research includes developing strain localization and failure models for soils and rocks, modeling coupled solid deformation/fluid flow phenomena in porous materials, and finite element modeling of faulting, cracking, and fracturing in quasi-brittle materials.

  • Anna Boslough

    Anna Boslough

    Lecturer

    BioI am a lecturer at the PRL (Product Realization Lab), teaching ME 128 / 318 Computer-Aided Product Realization. I also help manage lab operations for our 1000+ users. I have a second appointment in CEE, where I teach Architectural Design and Fabrication (CEE131G).

  • Adam Bouland

    Adam Bouland

    Assistant Professor of Computer Science

    BioAdam Bouland is an Assistant Professor of Computer Science. His research focuses on quantum computing theory and connections between computational complexity and physics. Please see http://theory.stanford.edu/~abouland/ for details.

  • Tom Bowman

    Tom Bowman

    Professor of Mechanical Engineering, Emeritus

    BioProfessor Bowman studies reacting flows, primarily through experimental means, and the processes by which pollutants are formed and destroyed in flames. In addition, he is interested in the environmental impact of energy use, specifically greenhouse gas emissions from use of fossil fuels.

  • Stephen Boyd

    Stephen Boyd

    Samsung Professor in the School of Engineering

    BioStephen P. Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering in the Information Systems Laboratory at Stanford University, and a member of the Institute for Computational and Mathematical Engineering. His current research focus is on convex optimization applications in control, signal processing, machine learning, and finance.

    Professor Boyd received an AB degree in Mathematics, summa cum laude, from Harvard University in 1980, and a PhD in EECS from U. C. Berkeley in 1985. In 1985 he joined Stanford's Electrical Engineering Department. He has held visiting Professor positions at Katholieke University (Leuven), McGill University (Montreal), Ecole Polytechnique Federale (Lausanne), Tsinghua University (Beijing), Universite Paul Sabatier (Toulouse), Royal Institute of Technology (Stockholm), Kyoto University, Harbin Institute of Technology, NYU, MIT, UC Berkeley, CUHK-Shenzhen, and IMT Lucca. He holds honorary doctorates from Royal Institute of Technology (KTH), Stockholm, and Catholic University of Louvain (UCL).

    Professor Boyd is the author of many research articles and four books: Introduction to Applied Linear Algebra: Vectors, Matrices, and Least-Squares (with Lieven Vandenberghe, 2018), Convex Optimization (with Lieven Vandenberghe, 2004), Linear Matrix Inequalities in System and Control Theory (with El Ghaoui, Feron, and Balakrishnan, 1994), and Linear Controller Design: Limits of Performance (with Craig Barratt, 1991). His group has produced many open source tools, including CVX (with Michael Grant), CVXPY (with Steven Diamond) and Convex.jl (with Madeleine Udell and others), widely used parser-solvers for convex optimization.

    He has received many awards and honors for his research in control systems engineering and optimization, including an ONR Young Investigator Award, a Presidential Young Investigator Award, and the AACC Donald P. Eckman Award. In 2013, he received the IEEE Control Systems Award, given for outstanding contributions to control systems engineering, science, or technology. In 2012, Michael Grant and he were given the Mathematical Optimization Society's Beale-Orchard-Hays Award, for excellence in computational mathematical programming. In 2023, he was given the AACC Richard E. Bellman Control Heritage Award, the highest recognition of professional achievement for U.S. control systems engineers and scientists. He is a Fellow of the IEEE, SIAM, INFORMS, and IFAC, a Distinguished Lecturer of the IEEE Control Systems Society, a member of the US National Academy of Engineering, a foreign member of the Chinese Academy of Engineering, and a foreign member of the National Academy of Engineering of Korea. He has been invited to deliver more than 90 plenary and keynote lectures at major conferences in control, optimization, signal processing, and machine learning.

    He has developed and taught many undergraduate and graduate courses, including Signals & Systems, Linear Dynamical Systems, Convex Optimization, and a recent undergraduate course on Matrix Methods. His graduate convex optimization course attracts around 300 students from more than 20 departments. In 1991 he received an ASSU Graduate Teaching Award, and in 1994 he received the Perrin Award for Outstanding Undergraduate Teaching in the School of Engineering. In 2003, he received the AACC Ragazzini Education award, for contributions to control education. In 2016 he received the Walter J. Gores award, the highest award for teaching at Stanford University. In 2017 he received the IEEE James H. Mulligan, Jr. Education Medal, for a career of outstanding contributions to education in the fields of interest of IEEE, with citation "For inspirational education of students and researchers in the theory and application of optimization."

  • Margaret Brandeau

    Margaret Brandeau

    Coleman F. Fung Professor in the School of Engineering and Professor, by courtesy, of Health Policy

    BioProfessor Brandeau is the Coleman F. Fung Professor in the School of Engineering and a Professor of Health Policy (by Courtesy). Her research focuses on the development of applied mathematical and economic models to support health policy decisions. Her recent work has focused on HIV prevention and treatment programs, programs to control the US opioid epidemic, and policies for minimizing the spread of infectious diseases, including COVID-19. She has served as Principal Investigator or Co-PI on a broad range of funded research projects.

    She is a Fellow of the Institute for Operations Research and Management Science (INFORMS) and a member of the Omega Rho International Honor Society for Operations Research and Management Science. From INFORMS she has received the President’s Award (recognizing important contributions to the welfare of society), the Pierskalla Prize (in 2001 and 2017, for research excellence in health care management science), the Philip McCord Morse Lectureship Award, and the Award for the Advancement of Women in Operations Research and the Management Sciences. She has also received the Award for Excellence in Application of Pharmacoeconomics and Health Outcomes Research from the International Society for Pharmacoeconomics and Outcomes Research, and a Presidential Young Investigator Award from the National Science Foundation, among other awards. Professor Brandeau earned a BS in Mathematics and an MS in Operations Research from MIT, and a PhD in Engineering-Economic Systems from Stanford.

  • Leticia Britos Cavagnaro

    Leticia Britos Cavagnaro

    Adjunct Professor

    BioLeticia Britos Cavagnaro, Ph.D., is a scientist turned designer with a knack for creating transformative learning experiences. She holds a Ph.D. in Developmental Biology from Stanford's School of Medicine, and is a former member of the Research in Education & Design Lab (REDlab) from Stanford’s School of Education. She is the co-founder and co-Director of the University Innovation Fellows, a program of the Hasso Plattner Institute of Design (d.school), which empowers students to be co-designers of their education in collaboration with faculty and leaders at their schools. Leticia was the founding Deputy Director of the National Center for Engineering Pathways to Innovation (Epicenter), an NSF-funded initiative that operated from 2011 to 2016 to foster innovation and entrepreneurship in engineering education across the United States. Leticia works with educators from hundreds of schools and across disciplines in transforming their teaching practices by applying design abilities and pedagogical levers through the Teaching and Learning Studio program of the d.school. In addition, she works with corporate, non-profit and education leaders in the US and abroad in exploring how design can embolden leadership and drive responsible innovation. Leticia teaches Advanced Reflective Practice and Capstone Project to graduate students from Stanford’s Design Impact MS program, and uses emerging technologies to empower learners to be self-directed, action-oriented, and reflective shapers of the future. She was born in Uruguay, grew up in Colombia, and lives in San Francisco with her husband.

    Connect with Leticia:
    LinkedIn: linkedin.com/pub/leticia-britos-cavagnaro/9/b4a/752/
    Twitter: @LeticiaBritosC (twitter.com/leticiabritosc)

  • Karl David Broman

    Karl David Broman

    Visiting Professor, Computer Science

    BioDavid Broman is currently a Visiting Professor at the Computer Science Department at Stanford University. He is a Professor at the Department of Computer Science, KTH Royal Institute of Technology in Stockholm, Sweden. His research focuses on the intersection of (i) programming languages and compilers, (ii) real-time and cyber-physical systems, and (iii) probabilistic machine learning.

    For further information, please see the web link at the top of the page (next to my name).

  • Mark Brongersma

    Mark Brongersma

    Stephen Harris Professor, Professor of Materials Science and Engineering and, by courtesy, of Applied Physics

    BioMark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD in Materials Science from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. During this time, he coined the term “Plasmonics” for a new device technology that exploits the unique optical properties of nanoscale metallic structures to route and manipulate light at the nanoscale. His current research is directed towards the development and physical analysis of nanostructured materials that find application in nanoscale electronic and photonic devices. Brongersma received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the Optical Society of America, the SPIE, and the American Physical Society.

  • Jennifer Brophy

    Jennifer Brophy

    Assistant Professor of Bioengineering

    Current Research and Scholarly InterestsWe develop technologies that enable the genetic engineering of plants and their associated microbes with the goal of driving innovation in agriculture for a sustainable future. Our work is focused in synthetic biology and the reprogramming of plant development for enhanced environmental stress tolerance.

  • Cynthia Brosque Markenson

    Cynthia Brosque Markenson

    Lecturer

    BioCynthia is a Ph.D. Candidate in Civil and Environmental Engineering (CEE) at Stanford University. She is conducting research under the supervision of Martin Fischer (CEE-CIFE) https://cife.stanford.edu/.

    Her research interests are Virtual Design and Construction (VDC) and Construction Robotics. She is currently teaching CEE 327: Construction Robotics.

    She has a Master of Science in Civil Engineering (Stanford University - 2019) and an Architecture Degree (Universidad ORT Uruguay - 2016).

  • Zev Bryant

    Zev Bryant

    Associate Professor of Bioengineering and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsMolecular motors lie at the heart of biological processes from DNA replication to vesicle transport. My laboratory seeks to understand the physical mechanisms by which these nanoscale machines convert chemical energy into mechanical work.