School of Engineering


Showing 21-36 of 36 Results

  • Derek Fong

    Derek Fong

    Sr Research Engineer

    BioDerek Fong's research in environmental and geophysical fluid dynamics focuses on understanding the fundamental transport and mixing processes in the rivers, estuaries and the coastal ocean. He employs different methods for studying such fluid processes including laboratory experiments, field experiments, and numerical modeling. His research projects include studying lateral dispersion, in stratified coastal flows, the fate and transport of freshwater in river plumes, advanced hydrodynamic measurement techniques, coherent structures in nearshore flows, bio-physical interactions in stratified lakes, fate of contaminated sediments, and secondary circulation and mixing in curved channels.

    Derek teaches a variety of classes at both the undergraduate and graduate level. Some of the classes he has offered include Mechanics of Fluids; Rivers, Streams and Canals; Transport and Mixing in Surface Waters; Introduction to Physical Oceanography; Mechanics of Stratified Fluids; Dynamics of Lakes and Reservoirs; Science and Engineering Problem Solving using Matlab; the Future and Science of Water; Hydrodynamics and Geophysical Fluid Dynamics.

    Prior to coming to Stanford, Derek spent five years at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution studying the dynamics of freshwater plumes for his doctoral thesis. He has also served as a senior lecturer at the University of Washington, Friday Harbor Laboratories in Friday Harbor, Washington.

  • Polly Fordyce

    Polly Fordyce

    Associate Professor of Bioengineering and of Genetics
    On Leave from 01/01/2014 To 08/31/2024

    Current Research and Scholarly InterestsThe Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.

  • Emily Fox

    Emily Fox

    Professor of Statistics and of Computer Science

    BioEmily Fox is a Professor in the Departments of Statistics and Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.

    Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in modeling complex time series arising in health, particularly from health wearables and neuroimaging modalities.

  • Curtis Frank

    Curtis Frank

    W. M. Keck, Sr. Professor in Engineering, Emeritus

    BioThe properties of ultrathin polymer films are often different from their bulk counterparts. We use spin casting, Langmuir-Blodgett deposition, and surface grafting to fabricate ultrathin films in the range of 100 to 1000 Angstroms thick. Macromolecular amphiphiles are examined at the air-water interface by surface pressure, Brewster angle microscopy, and interfacial shear measurements and on solid substrates by atomic force microscopy, FTIR, and ellipsometry. A vapor-deposition-polymerization process has been developed for covalent grafting of poly(amino acids) from solid substrates. FTIR measurements permit study of secondary structures (right and left-handed alpha helices, parallel and anti-parallel beta sheets) as a function of temperature and environment.

    A broadly interdisciplinary collaboration has been established with the Department of Ophthalmology in the Stanford School of Medicine. We have designed and synthesized a fully interpenetrating network of two different hydrogel materials that have properties consistent with application as a substitute for the human cornea: high water swellability up to 85%,tensile strength comparable to the cornea, high glucose permeability comparable to the cornea, and sufficient tear strength to permit suturing. We have developed a technique for surface modification with adhesion peptides that allows binding of collagen and subsequent growth of epithelial cells. Broad questions on the relationships among molecular structure, processing protocol, and biomedical device application are being pursued.

  • Antony Fraser-Smith

    Antony Fraser-Smith

    Professor (Research) of Electrical Engineering and of Geophysics, Emeritus

    BioFraser-Smith's research focuses on the use of low frequency electromagnetic fields, both as a means of probing (1) the interior of the earth, and (2) the space environment near the earth, as well as for communicating with, and detecting, objects submerged in the sea or buried in the earth, and for detecting changes taking place in the Earth and the near-Earth space environment.

  • David Freyberg

    David Freyberg

    Associate Professor of Civil and Environmental Engineering and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsMy students and I study sediment and water balances in aging reservoirs, collaborative governance of transnational fresh waters, the design of centralized and decentralized wastewater collection, treatment, and reuse systems in urban areas, and hydrologic ecosystem services in urban areas and in systems for which sediment production, transport, and deposition have significant consequences.

  • Oliver Fringer

    Oliver Fringer

    Professor of Civil and Environmental Engineering and of Oceans

    BioFringer's research focuses on the development and application of numerical models and high-performance computational techniques to the study of fundamental processes that influence the dynamics of the coastal ocean, rivers, lakes, and estuaries.

  • Renate Fruchter

    Renate Fruchter

    Director of PBL Lab

    Current Research and Scholarly InterestsCognitive demands on global learners, VR in teamwork, Sustainability, Wellbeing

  • Gerald Fuller

    Gerald Fuller

    Fletcher Jones Professor in the School of Engineering

    BioThe processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).

    The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.

    There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films.