School of Engineering


Showing 41-52 of 52 Results

  • Subhasish Mitra

    Subhasish Mitra

    William E. Ayer Professor of Electrical Engineering and Professor of Computer Science

    BioSubhasish Mitra holds the William E. Ayer Endowed Chair Professorship in the Departments of Electrical Engineering and Computer Science at Stanford University. He directs the Stanford Robust Systems Group, serves on the leadership team of the Microelectronics Commons AI Hardware Hub funded by the US CHIPS and Science Act, leads the Computation Focus Area of the Stanford SystemX Alliance, and is the Associate Chair (Faculty Affairs) of Computer Science. His research ranges across Robust Computing, NanoSystems, Electronic Design Automation (EDA), and Neurosciences. Results from his research group have influenced almost every contemporary electronic system and have inspired significant government and research initiatives in multiple countries. He has held several international academic appointments — the Carnot Chair of Excellence in NanoSystems at CEA-LETI in France, Invited Professor at EPFL in Switzerland, and Visiting Professor at the University of Tokyo in Japan. Prof. Mitra also has consulted for major technology companies including AMD (XIlinx), Cisco, Google, Intel, Merck (EMD Electronics), and Samsung.

    In the field of Robust Computing, he has created many key approaches for circuit failure prediction, on-line diagnostics, QED system validation, soft error resilience, and X-Compact test compression. Their adoption by industry is growing rapidly, in markets ranging from cloud computing to automotive systems, under various names (System Lifecycle Management, Predictive Health Monitoring, In-System Test Architecture, In-field Scan). His X-Compact approach has proven essential to cost-effective manufacturing and high-quality testing of almost all 21st century systems. X-Compact and its derivatives enabled billions of dollars of cost savings across the industry.

    In the field of NanoSystems, with his students and collaborators, he demonstrated several firsts: the first NanoSystems hardware among all beyond-silicon nanotechnologies for energy-efficient computing (the carbon nanotube computer), the first 3D NanoSystem with computation immersed in data storage, the first published end-to-end computing systems using resistive memories (Resistive RAM-based non-volatile computing systems delivering 10-fold energy efficiency versus embedded flash), and the first monolithic 3D integration combining heterogeneous logic and memory technologies in a silicon foundry. These received wide recognition: cover of NATURE, several Highlights to the US Congress, and highlight as "important scientific breakthrough" by news organizations worldwide.

    Prof. Mitra's honors include the Harry H. Goode Memorial Award (by IEEE Computer Society for outstanding contributions in the information processing field), Newton Technical Impact Award in EDA (test-of-time honor by ACM SIGDA and IEEE CEDA), the University Researcher Award (by Semiconductor Industry Association and Semiconductor Research Corporation to recognize lifetime research contributions), the EDAA Achievement Award (by European Design and Automation Association, given to individuals who made outstanding contributions to electronic design, automation and testing in their life), the Intel Achievement Award (Intel’s highest honor), and the Distinguished Alumnus Award from the Indian Institute of Technology, Kharagpur. He and his students have published over 15 award-winning papers across 5 topic areas (technology, circuits, EDA, test, verification) at major venues including the Design Automation Conference, International Electron Devices Meeting, International Solid-State Circuits Conference, International Test Conference, Symposia on VLSI Technology/VLSI Circuits, and Formal Methods in Computer-Aided Design. Stanford undergraduates have honored him several times "for being important to them." He is a Fellow of the Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE), and a Foreign Member of Academia Europaea.

  • Ariam Mogos

    Ariam Mogos

    Lecturer

    BioAriam Mogos leads emerging technology initiatives at Stanford's Hasso Plattner Institute of Design (d.school), where she helps students and educators work with emerging technologies like AI and blockchain, and shapes conversations around the tech’s ethical implications on humans and nature. Her design work and research also investigates the ways that technology can foster playful learning experiences that bridge communities and cultures.

  • Parviz Moin

    Parviz Moin

    Franklin P. and Caroline M. Johnson Professor in the School of Engineering

    BioMoin is the founding director of the Center for Turbulence Research. Established in 1987 as a research consortium between NASA and Stanford, Center for Turbulence Research is devoted to fundamental studies of turbulent flows. Center of Turbulence Research is widely recognized as the international focal point for turbulence research, attracting diverse groups of researchers from engineering, mathematics and physics. He was the founding director of the Institute for Computational and Mathematical Engineering at Stanford.

    Professor Moin pioneered the use of direct and Large Eddy Simulation techniques for the study of turbulence physics, control and modelling concepts and has written widely on the structure of turbulent shear flows. His current interests include: Computational physics, Physics and control of turbulent boundary layers, hypersonic flows, propulsion, flow control, large eddy simulation for aerospace applications and aircraft icing.

  • Stephen Monismith

    Stephen Monismith

    Obayashi Professor in the School of Engineering and Professor of Oceans

    Current Research and Scholarly InterestsHydrodynamics of lakes, estuaries, coral reefs, kelp forests and the coastal ocean

  • Louie Montoya

    Louie Montoya

    Lecturer

    BioA self-proclaimed deeper learning education nerd, Louie Montoya joined the d.school in 2018 to work with educators on learning and implementing design in the classroom. Today he leads the Deeper Learning Puzzle Bus, a K12 lab mobile experiment designed to look at how “escape rooms” can change the way educators think about measurement and assessment, as well as bring more delight into the classroom.


    A first generation Mexican American raised across the western hemisphere, Louie developed an interest in other cultures that anchors his work on behalf of equitable practices in the design process. As an experience designer at the Business Innovation Factory in Rhode Island, Louie co-designed and ran the Teachers for Equity Fellowship that worked with educators across the United States to address issues of racial inequity in their schools and classrooms. As a member of the Deeper Learning network Louie focuses on building capacity around skills such as collaboration, communication and critical thinking with students.

  • Kunal Mukherjee

    Kunal Mukherjee

    Assistant Professor of Materials Science and Engineering

    BioKunal Mukherjee is an assistant professor in Materials Science and Engineering at Stanford. He has been an assistant professor in the Materials department at UC Santa Barbara (2016-2020), held postdoctoral appointments at IBM TJ Watson Research Center (2016) and MIT (2015), and worked as a transceiver engineer at Finisar (2009-2010).

    The Mukherjee group specializes in semiconductors that emit and detect light in the infrared. Our research enables better materials for data transmission, sensing, manufacturing, and environmental monitoring. We make high-quality thin films with IV-VI (PbSnSe) and III-V (GaAs-InAs/GaSb) material systems and spend much of our time understanding how imperfections in the crystalline structure such as dislocations and point defects impact their electronic and optical properties. This holds the key to directly integrating these semiconductors with silicon and germanium substrates for new hybrid circuits that combine infrared photonics and conventional electronics.

  • Walter Murray

    Walter Murray

    Professor (Research) of Management Science and Engineering, Emeritus

    BioProfessor Murray's research interests include numerical optimization, numerical linear algebra, sparse matrix methods, optimization software and applications of optimization. He has authored two books (Practical Optimization and Optimization and Numerical Linear Algebra) and over eighty papers. In addition to his University work he has extensive consulting experience with industry, government, and commerce.

  • David Myung, MD, PhD

    David Myung, MD, PhD

    Associate Professor of Ophthalmology and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsNovel biomaterials to reconstruct the wounded cornea
    Mesenchymal stem cell therapy for corneal and ocular surface regeneration
    Engineered biomolecule therapies for promote corneal wound healing

    Telemedicine in ophthalmology