School of Engineering


Showing 1-36 of 36 Results

  • Julia Palacios

    Julia Palacios

    Associate Professor of Statistics and of Biomedical Data Science

    BioDr. Palacios seek to provide statistically rigorous answers to concrete, data driven questions in evolutionary genetics and public health . My research involves probabilistic modeling of evolutionary forces and the development of computationally tractable methods that are applicable to big data problems. Past and current research relies heavily on the theory of stochastic processes, Bayesian nonparametrics and recent developments in machine learning and statistical theory for big data.

  • Daniel Palanker, PhD

    Daniel Palanker, PhD

    Professor of Ophthalmology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsInteractions of electric field and light with biological cells and tissues and their applications to imaging, diagnostics, therapeutics and prosthetics, primarily in ophthalmology.
    Specific fields of interest:
    Electronic retinal prosthesis;
    Electronic enhancement of tear secretion;
    Electronic control of blood vessels;
    Non-damaging retinal laser therapy;
    Ultrafast laser surgery;
    Interferometric imaging of neural signals;
    Cell transplantation and retinal plasticity.

  • Bradford Parkinson

    Bradford Parkinson

    Edward C. Wells Professor in the School of Engineering, Emeritus

    BioProfessor Bradford Parkinson was the Chief Architect for GPS, and led the original advocacy for the system in 1973 as an Air Force Colonel. Gaining approval, he became the first Director of the GPS Joint Program Office and led the original development of spacecraft, Master Control Station and 8 types of User Equipment. He continued leadership of the Program through the extensive test validation Program, including being the Launch Commander for the first GPS satellite launches. This original deployment of GPS demonstrated comfortable margins against all PNT (Positioning, Navigation, and Timing) requirements.
    Earlier in his career, he was a key developer of a modernized AC-130 Gunship, introduction of which included 160 hours of combat missions. He was an instructor at the USAF Test Pilot School. In addition he led the Department of Astronautics and Computer Science at the US Air Force Academy. He retired from the US Air Force as a Colonel.
    He was appointed a Professor at Stanford University in 1984, after six years of experience in industry. At Stanford University, he led the development of many innovative applications of GPS, including:
    1.Commercial aircraft (Boeing 737) blind landing using GPS alone,
    2.Fully automatic GPS control of Farm Tractors on a rough field to an accuracy of 2 inches,
    3.Pioneering the augmentation to GPS (WAAS) that allows any user to achieve accuracies of 2 feet and very high levels of integrity assurance.
    He has been the CEO of two companies, and serves on many boards. He is the editor/author of the AIAA Award winning 2 Volumes: “GPS Theory and Applications” and is author or coauthor of over 80 technical papers.
    Among his many awards is the Draper Prize of the National Academy of Engineering, considered by some to be the “Engineering Nobel”.

  • M Elisabeth Pate-Cornell

    M Elisabeth Pate-Cornell

    Burton J. and DeeDee McMurtry Professor in the School of Engineering

    BioDr. Marie-Elisabeth Paté-Cornell is the Burt and Deedee McMurtry Professor in the School of Engineering, and a Professor and Founding Chair of the Department of Management Science and Engineering at Stanford University (2000-2011). Previously, she was the Professor and Chair of the Stanford Department of Industrial Engineering and Engineering Management and an Assistant Professor of Civil Engineering at MIT. Her specialty is engineering risk analysis with application to complex systems (seismic risk, space systems, medical procedures and devices, offshore oil platforms, cyber security, etc.). Her earlier research has focused on the optimization of warning systems and the explicit inclusion of human and organizational factors in the analysis of systems’ failure risks. Her more recent work is on the use of game theory in risk analysis with applications that have included counterterrorism and cyber security.

    She is a member of the National Academy of Engineering where she chairs the section of Interdisciplinary Engineering and Special Fields, of the French Académie des Technologies, and of the NASA Advisory Council. She is co-chair of the committee of the National Academies (NASEM) on risk analysis methods for nuclear war and nuclear terrorism. She is a Fellow (and past president) of the Society for Risk Analysis and of the Institute for Operations Research and Management Science. She is the author of more than one hundred publications, with several best paper awards, and the co-editor of a book on Perspectives on Complex Global Problems (2016). She was a member of the Board of Advisors of the Naval Postgraduate School, which she chaired from 2004 to 2006, and of the Navy War College. Dr. Paté-Cornell was also a member of the President’s (Foreign) Intelligence Advisory Board (2001-2008), of the board of the Aerospace Corporation (2004-2013) of Draper Laboratory (2009-2016), and of InQtel (2006-2017). She was awarded the Frank Ramsey Medal of the Decision Analysis Society, the 2021 IEEE Ramo medal in Systems Engineering and Science, and the 2022 PICMET Award for Leadership in Technology Management. She is a Fellow (and past president) of the Society for Risk Analysis and of the Institute for Management Science and Operations Research, and a Distinguished Vising Scientist of the NASA Jet Propulsion Laboratory. She is the author of more than one hundred publications, for which she got several best paper awards, and the co-editor of a book on Perspectives on Complex Global Problems (2016). She holds a BS in Mathematics and Physics, Marseille (France), an Engineering degree (Applied Math/CS) from the Institut Polytechnique de Grenoble (France), an MS in Operations Research and a PhD in Engineering-Economic Systems, both from Stanford University.

    She and her late husband, Dr. Allin Cornell had two children, Philip Cornell (born 1981) and Ariane Cornell (1984). She is married to Admiral James O. Ellis Jr. (US Navy, Ret.).

  • Arogyaswami Paulraj

    Arogyaswami Paulraj

    Professor (Research) of Electrical Engineering, Emeritus

    BioProfessor Emeritus Arogyaswami Paulraj, Stanford University, is a pioneer of MIMO wireless communications, a technology break through that enables improved wireless performance. MIMO is now incorporated into all new wireless systems.

    Paulraj is the author of over 400 research papers, two textbooks, and a co-inventor in 80 US patents.

    Paulraj has won over a dozen awards, notably the National Inventors Hall of Fame (USPTO), Marconi Prize and Fellowship, 2014 and the IEEE Alexander Graham Bell Medal, 2011. He is a fellow of eight scientific / engineering national academies including the US, China, India, and Sweden. He is a fellow of IEEE and AAAS.

    In 1999, Paulraj founded Iospan Wireless Inc. - which developed and established MIMO-OFDMA wireless as the core 4G technology. Iospan was acquired by Intel Corporation in 2003. In 2004, he co-founded Beceem Communications Inc. The company became the market leader in 4G-WiMAX semiconductor and was acquired by Broadcom Corp. in 2010. In 2014 he founded Rasa Networks to develop Machine Learning tools for WiFi Networks. The company was acquired HPE in 2016.

    During his 30 years in the Indian (Navy) (1961-1991), he founded three national-level laboratories in India and headed one of India’s most successful military R&D projects – APSOH sonar. He received over a dozen awards (many at the national level) in India including the Padma Bhushan, Ati Vishist Seva Medal and the VASVIK Medal.

  • John M. Pauly

    John M. Pauly

    Reid Weaver Dennis Professor

    BioInterests include medical imaging generally, and magnetic resonance imaging (MRI) in particular. Current efforts are focused on medical applications of MRI where real-time interactive imaging is important. Two examples are cardiac imaging, and the interactive guidance of interventional procedures. Specific interests include rapid methods for the excitation and acquisition of the MR signal, and the reconstruction of images from the data acquired using these approaches.

  • Kim Butts Pauly

    Kim Butts Pauly

    Professor of Radiology (Radiological Sciences Lab) and, by courtesy, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly InterestsWe are investigating and developing, and applying focused ultrasound in neuromodulation, blood brain barrier opening, and ablation for both neuro and body applications.

  • Marco Pavone

    Marco Pavone

    Associate Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering and of Computer Science

    BioDr. Marco Pavone is an Associate Professor of Aeronautics and Astronautics at Stanford University, where he directs the Autonomous Systems Laboratory and the Center for Automotive Research at Stanford. He is also a Distinguished Research Scientist at NVIDIA where he leads autonomous vehicle research. Before joining Stanford, he was a Research Technologist within the Robotics Section at the NASA Jet Propulsion Laboratory. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. His main research interests are in the development of methodologies for the analysis, design, and control of autonomous systems, with an emphasis on self-driving cars, autonomous aerospace vehicles, and future mobility systems. He is a recipient of a number of awards, including a Presidential Early Career Award for Scientists and Engineers from President Barack Obama, an Office of Naval Research Young Investigator Award, a National Science Foundation Early Career (CAREER) Award, a NASA Early Career Faculty Award, and an Early-Career Spotlight Award from the Robotics Science and Systems Foundation. He was identified by the American Society for Engineering Education (ASEE) as one of America's 20 most highly promising investigators under the age of 40. His work has been recognized with best paper nominations or awards at a number of venues, including the European Conference on Computer Vision, the IEEE International Conference on Robotics and Automation, the European Control Conference, the IEEE International Conference on Intelligent Transportation Systems, the Field and Service Robotics Conference, the Robotics: Science and Systems Conference, and the INFORMS Annual Meeting.

  • Roy Pea

    Roy Pea

    Director, H-STAR, David Jacks Professor of Education and Professor, by courtesy, of Computer Science

    Current Research and Scholarly Interestslearning sciences focus on advancing theories, research, tools and social practices of technology-enhanced learning of complex domains

  • Markus Pelger

    Markus Pelger

    Assistant Professor of Management Science and Engineering

    Current Research and Scholarly InterestsHis research focuses on understanding and managing financial risk. He develops mathematical financial models and statistical methods, analyzes financial data and engineers computational techniques. His research is divided into three streams: machine learning solutions to big-data problems in empirical asset pricing, statistical theory for high-dimensional data and stochastic financial modeling.

  • Matthew Petrucci

    Matthew Petrucci

    Research Engineer

    BioMatt is the Scientific Program Manager for the Mobilize and Restore Centers at Stanford University. He is interested in developing digital health tools that optimize human mobility and performance. His previous research has focused on cross-sectional, longitudinal, translational, and feasibility studies in people with Parkinson’s disease, people with multiple sclerosis, and firefighters. These studies included evaluating objective biomarkers of disease or performance, optimizing and evaluating novel treatments and interventions, developing real-time closed-loop algorithms, and clinical trials. He helps run the various scientific outreach and training programs of the Mobilize and Restore Centers.

  • Robert Phelts

    Robert Phelts

    Research Engineer

    BioR. Eric Phelts is a research engineer in the Department of Aeronautics and Astronautics at Stanford University. His research involves signal monitoring techniques and analysis for SBAS, GBAS, and ARAIM.

  • Piero Pianetta

    Piero Pianetta

    Professor (Research) of Photon Science and of Electrical Engineering

    BioPianetta's research is directed towards understanding how the atomic and electronic structure of semiconductor interfaces impacts device technology pertaining to advanced semiconductors and photocathodes. His research includes the development of new analytical tools for these studies based on the use of synchrotron radiation. These include the development of ultrasensitive methods to analyze trace impurities on the surface of silicon wafers at levels as low as 1e-6 monolayer (~1e8 atoms/cm2) and the use of various photoelectron spectroscopies (X-ray photoemission, NEXAFS, X-ray standing waves and photoelectron diffraction) to determine the bonding and atomic structure at the interface between silicon and different passivating layers. Recent projects include the development of high resolution (~30nm) x-ray spectromicroscopy with applications to energy materials such as Li batteries.

  • Mert Pilanci

    Mert Pilanci

    Assistant Professor of Electrical Engineering

    Current Research and Scholarly InterestsDr. Pilanci's research interests include neural networks, machine learning, mathematical optimization, information theory and signal processing.

  • Peter Pinsky

    Peter Pinsky

    Professor of Mechanical Engineering, Emeritus

    BioPinsky works in the theory and practice of computational mechanics with a particular interest in multiphysics problems in biomechanics. His work uses the close coupling of techniques for molecular, statistical and continuum mechanics with biology, chemistry and clinical science. Areas of current interest include the mechanics of human vision (ocular mechanics) and the mechanics of hearing. Topics in the mechanics of vision include the mechanics of transparency, which investigates the mechanisms by which corneal tissue self-organizes at the molecular scale using collagen-proteoglycan-ion interactions to explain the mechanical resilience and almost perfect transparency of the tissue and to provide a theoretical framework for engineered corneal tissue replacement. At the macroscopic scale, advanced imaging data is used to create detailed models of the 3-D organization of collagen fibrils and the results used to predict outcomes of clinical techniques for improving vision as well as how diseased tissue mechanically degrades. Theories for mass transport and reaction are being developed to model metabolic processes and swelling in tissue. Current topics in the hearing research arena include multiscale modeling of hair-cell mechanics in the inner ear including physical mechanisms for the activation of mechanically-gated ion channels. Supporting research addresses the mechanics of lipid bilayer cell membranes and their interaction with the cytoskeleton. Recent past research topics include computational acoustics for exterior, multifrequency and inverse problems; and multiscale modeling of transdermal drug delivery. Professor Pinsky currently serves as Chair of the Mechanics and Computation Group within the Department of Mechanical Engineering at Stanford.

  • Grigore Pintilie

    Grigore Pintilie

    Research Scientist

    BioYork University, B.Sc. 1995-1999, Computer Science - Computer Graphics, HCI
    University of Toronto, M.Sc. 1999-2001, Computer Science, Computer Graphics
    Blueprint Initiative, 2001-2005 - Bioinformatics Research
    MIT, Ph.D. 2005-2011 - Electrical Engineering and Computer Science, Biology - CryoEM map segmentation and fitting of atomic models
    Baylor College of Medicine 2011-2017 - Scientific Programmer - Cryo-EM map analysis and atomic modeling
    Stanford University 2017-present - Research Scientist - Cryo-EM map analysis and atomic modeling

  • Gordon Pipa

    Gordon Pipa

    Visiting Professor, Bioengineering

    BioGordon Pipa is a visiting Professor at Stanford. His research is focused on understanding the principles of neuronal coding and learning in spiking recurrent neuronal networks with the goal to enable building future neuromorphic AI systems. A main focus is on understanding the dendritic information processing in the context of the large spiking neuronal networks. In the past, he held position at the Max-Planck for Brain Research (Wolf Singer), MIT (Emery Brown), TU Berlin (Klaus Obermayer).

    He currently holds the following positions: Visiting Professor at Stanford, Bioengineering, Chair of the Neuroinformatics Dep., Institute of Cognitive Science at the Osnabrück University (Germany), Director of the Institute of Cognitive Science at the Osnabrück University (Germany), Fellow at the Frankfurt Institute of Advanced Studies (Germany)

  • Serge Plotkin

    Serge Plotkin

    Associate Professor of Computer Science, Emeritus

    BioPlotkin's focus is on optimization problems that are encountered in the context of design, management, and maintenance of broadband communication networks. Currently his main effort in this area is concentrated on development of algorithms for network topology design, routing, capacity sizing, server placement, and fair resource allocation. His goal is to develop both offline strategies that can be used during network design stage, as well as online strategies that can be applied to optimize existing network infrastructure.

  • Jim Plummer

    Jim Plummer

    John M. Fluke Professor of Electrical Engineering and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsGenerally studies the governing physics and fabrication technology of silicon integrated circuits, including the scaling limits of silicon technology, and the application of silicon technology outside traditional integrated circuits, including power switching devices such as IGBTs. Process simulation tools like SUPREM for simulating fabrication. Recent work has focused on wide bandgap semiconductor materials, particularly SiC and GaN, for power control devices.

  • Ada Poon

    Ada Poon

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsOur research focuses on providing theoretical foundations and engineering platforms for realizing electronics that seamlessly integrate with the body. Such systems will allow precise recording or modulation of physiological activity, for advancing basic scientific discovery and for restoring or augmenting biological functions for clinical applications.

  • Eric Pop

    Eric Pop

    Pease-Ye Professor, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Applied Physics

    Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.

  • J David Powell

    J David Powell

    Professor of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus

    BioEDUCATION:
    1960 - B.S. Mechanical Engineering, M.I.T.
    1966 - M.S. Aeronautics & Astronautics, Stanford
    1970 - Ph.D. Aeronautics & Astronautics, Stanford

    EXPERIENCE:
    1960-1961 - Engine Design and Testing Engineer at Outboard Marine Corp.
    1961-1967 – Engineer at Lockheed in the field of Aerospace Guidance and Control
    1967-1968 – Engineer at Analytical Mechanics Associates
    1968-1970 – Engineer, Systems Control, Inc. Parameter ID of aircraft models from flight data, automatic generation of approach paths for Air Traffic Control. Attended Stanford University specializing in control systems.
    1971 – 1998 – Member of the Stanford Faculty in the Aeronautics and Astronautics Department. His research has included spacecraft pointing, space tether dynamics and control, internal combustion engine control, the design of aerospace digital flight control systems, GPS-based attitude determination augmented with inertial sensors, and the use of GPS for air and land vehicle surveillance and navigation. He taught courses in aerospace control including radio and inertial navigation, optimization and digital implementations and is a coauthor of two of the leading control textbooks. He is also an author or coauthor on over 100 papers.
    1998 – present – Emeritus faculty carrying out research in Aeronautics and Astronautics at Stanford Univ. Recent focus of research is the use of GPS-based attitude determination augmented with inertial sensors, applications of the FAA’s WAAS for enhanced pilot displays, flight inspection of aircraft landing systems, and the use of WAAS and new displays to enable closer spacing of parallel runways.

    SOCIETY MEMBERSHIPS
    AIAA (Fellow), ASME (Fellow), SAE, IEEE, ION

    CONSULTANT TO: (over past several years)
    Seagull Technology
    Sequoia Instruments
    Engine Control and Monitoring
    Transparent Networks
    Pratt and Whitney (Technical Advisory Committee)
    Sensor Platforms

    OTHER RECENT ACTIVITIES
    Co-Founder, CEO, and Director of GyroSat Corp. 1999 – 2000
    Director of Sequoia Instruments, 2001 – 2005
    Aircraft owner and licensed instrument pilot
    National Research Council Panel member for the review of NASA airspace activities, 2003
    Board of Directors, Mechanics Bank, Richmond, CA., 2003 – 2015
    Board of Directors, ExactBid, Inc. 2014-present.

  • Balaji Prabhakar

    Balaji Prabhakar

    VMware Founders Professor of Computer Science, Professor of Electrical Engineering and, by courtesy, of Operations, Information and Technology at the Graduate School of Business

    BioPrabhakar's research focuses on the design, analysis, and implementation of data networks: both wireline and wireless. He has been interested in designing network algorithms, problems in ad hoc wireless networks, and designing incentive mechanisms. He has a long-standing interest in stochastic network theory, information theory, algorithms, and probability theory.

  • Manu Prakash

    Manu Prakash

    Associate Professor of Bioengineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Oceans and of Biology

    BioWe use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions such as how do cells sense pressure or gravity? Finally, we are dedicated towards inventing and distributing “frugal science” tools to democratize access to science (previous inventions used worldwide: Foldscope, Abuzz), diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito surveillance or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.

  • Friedrich Prinz

    Friedrich Prinz

    Leonardo Professor, Professor of Mechanical Engineering, of Materials Science and Engineering and Senior Fellow at the Precourt Institute for Energy

    BioFritz Prinz is the Leonardo Professor in the School of Engineering at Stanford University, Professor of Materials Science and Engineering, Professor of Mechanical Engineering, and Senior Fellow at the Precourt Institute for Energy. He also serves as the Director of the Nanoscale Prototyping Laboratory and Faculty Co-director of the NPL-Affiliate Program. A solid-state physicist by training, Prinz leads a group of doctoral students, postdoctoral scholars, and visiting scholars who are addressing fundamental issues on energy conversion and storage at the nanoscale. In his Laboratory, a wide range of nano-fabrication technologies are employed to build prototype fuel cells and capacitors with induced topological electronic states. We are testing these concepts and novel material structures through atomic layer deposition, scanning tunneling microscopy, impedance spectroscopy and other technologies. In addition, the Prinz group group uses atomic scale modeling to gain insights into the nature of charge separation and recombination processes. Before coming to Stanford in 1994, he was on the faculty at Carnegie Mellon University. Prinz earned a PhD in Physics at the University of Vienna.

  • Patrick Lee Purdon

    Patrick Lee Purdon

    Professor of Anesthesiology, Perioperative and Pain Medicine and, by courtesy, of Bioengineering

    BioMy research integrates neuroimaging, biomedical signal processing, and the systems neuroscience of general anesthesia and sedation.

    My group conducts human studies of anesthesia-induced unconsciousness, using a variety of techniques including multimodal neuroimaging, high-density EEG, and invasive neurophysiological recordings used to diagnose medically refractory epilepsy. We also develop novel methods in neuroimaging and biomedical signal processing to support these studies, as well as methods for monitoring level of consciousness under general anesthesia using EEG.