School of Engineering


Showing 1-50 of 143 Results

  • James L. Adams

    James L. Adams

    Professor of Industrial Engineering and Engineering Management and of Mechanical Engineering, Emeritus

    Current Research and Scholarly InterestsI have for some time been working on two books. The working title for one is Making, Fixing, and Tinkering, and it concerns the benefits of working with the hands. The other has a working title of Homo Demi Sapiens, and is about the balance of creativity and control in very large groups (societies, religions, etc.). I am also revising a book entitled The Building of an Engineer, which I wrote for my aging mother and self-published. It is somewhat autobiographical, and although it is available on Amazon, I do not consider it quite ready for public reading.

  • Thomas P. Andriacchi

    Thomas P. Andriacchi

    Professor of Mechanical Engineering and of Orthopaedic Surgery, Emeritus

    Current Research and Scholarly InterestsProfessor Andriacchi's research focuses on the biomechanics of human locomotion and applications to medical devices, sports injury, osteoarthritis, the anterior cruciate ligament and low cost prosthetic limbs

  • David Beach

    David Beach

    Professor (Teaching) of Mechanical Engineering

    BioBeach teaches courses in the areas of design and manufacturing. Beach and Craig Milroy co-direct the Product Realization Laboratory which provides 1700 students annually with hands on experiences in product definition, conceptual design, detail design, and prototype creation. The PRL offers courses, mentors and tools in support of integrated designing and making. Pedagogically, Beach believes that creation of experience from which students (and teams of students) can interpret and internalize their own conclusions provides an excellent complement to content based teaching. His goal is to add strength in tacit knowledge which derives from the hands-on synthesis of design, prototype building, presentation and criticism.. The resulting judgment and instinct regarding materials, devices, materials transformation processes, and design process complement classical analytical engineering education to create superior engineers.

  • Jan Becker

    Jan Becker

    Lecturer

    BioJan Becker is President, CEO, and Co-Founder of Apex.AI, Inc. He is also the Managing Director of the Apex.AI GmbH and Co-Founder and Director of the Autoware Foundation. Prior to founding Apex.AI, he was Senior Director at Faraday Future responsible for Autonomous Driving and Director at Robert Bosch LLC responsible for Automated Driving in the North America. He also served as a Senior Manager and Principal Engineer at the Bosch Research and Technology Center in Palo Alto, CA, USA, and as a senior research engineer for Corporate Research at Robert Bosch GmbH, Germany. Since 2010, Jan is Lecturer at Stanford University for autonomous vehicles and driver assistance. Previously, he was a visiting scholar at the University’s Artificial Intelligence Lab and a member of the Stanford Racing Team for the 2007 DARPA Urban Challenge. In 2019, Jan was appointed to serve on the external Advisory Board of MARELLI to provide strategic advice to the MARELLI Board.

    He is an inventor who is listed on more than 50 patents and patent applications, author of more than 50 publications and papers covering autonomous systems, robotics, driver assistance, automated driving, and frequent speaker at major conferences. Jan was listed as one of the top ‘60 people driving the self-driving movement’ by Automotive News in 2016. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and belongs to the organization’s Control Systems Society, Intelligent Transportation Systems Society, and Robotics and Automation Society. He is Associate Editor of the IEEE Intelligent Vehicles Symposium and the Intelligent Transportation Systems Conference, and was on the Board of Governors of IEEE’s Intelligent Transportation Systems Society from 2014-2016 and served on the board of directors of Silicon Valley Robotics from 2012-2014. Jan is also a member of SAE and co-author of the standard SAE J3016, which defines the levels of driving automation. Jan earned a Ph.D. in control engineering from the Technical University of Braunschweig, Germany, a master’s degree in mechanical and aerospace engineering from the State University of New York at Buffalo, USA and a master’s degree in electrical engineering from the Technical University of Darmstadt, Germany.

  • Tom Bowman

    Tom Bowman

    Professor of Mechanical Engineering

    BioProfessor Bowman studies reacting flows, primarily through experimental means, and the processes by which pollutants are formed and destroyed in flames. In addition, he is interested in the environmental impact of energy use, specifically greenhouse gas emissions from use of fossil fuels.

  • Reilly Patrick Brennan

    Reilly Patrick Brennan

    Lecturer

    BioReilly P. Brennan is a founding partner at Trucks, a seed-stage venture capital fund for entrepreneurs changing the future of transportation. Trucks investments focus on autonomous, connected and shared vehicle technologies.

    Reilly holds a teaching appointment at Stanford University, where he teaches twice per year in the School of Engineering and the d.school. His classes bridge the fields of transportation, design and entrepreneurship. He is a dedicated educator and advisor to young researchers and entrepreneurs, actively participating in mentorship roles at Techstars Mobility and the University of Michigan.

    His influential newsletter FoT is a radar for what’s happening in transportation.

    Prior to Trucks, Reilly was Executive Director for Stanford’s automotive research program, Revs. Prior to Stanford he developed his love for transportation in media and technology at editorial publications ranging from Automobile to AOL to Monocle and seat time in over 1000 test cars. He was a member of the Le Mans-winning factory Corvette C5-R program. His personal land speed record is 168 mph, behind the wheel of a Chaparral 2E.

  • Wei Cai

    Wei Cai

    Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioPredicting mechanical strength of materials through theory and simulations of defect microstructures across atomic, mesoscopic and continuum scales. Developing new atomistic simulation methods for long time-scale processes, such as crystal growth and self-assembly. Applying machine learning techniques to materials research. Modeling and experiments on the metallurgical processes in metal 3D printing. Understanding microstructure-property relationship in materials for stretchable electronics, such as carbon nanotube networks and semiconducting elastomers.

  • Brian Cantwell

    Brian Cantwell

    Edward C. Wells Professor in the School of Engineering and Professor of Mechanical Engineering

    BioProfessor Cantwell's research interests are in the area of turbulent flow. Recent work has centered in three areas: the direct numerical simulation of turbulent shear flows, theoretical studies of the fine-scale structure of turbulence, and experimental measurements of turbulent structure in flames. Experimental studies include the development of particle-tracking methods for measuring velocity fields in unsteady flames and variable density jets. Research in turbulence simulation includes the development of spectral methods for simulating vortex rings, the development of topological methods for interpreting complex fields of data, and simulations of high Reynolds number compressible and incompressible wakes. Theoretical studies include predictions of the asymptotic behavior of drifting vortex pairs and vortex rings and use of group theoretical methods to study the nonlinear dynamics of turbulent fine-scale motions. Current projects include studies of fast-burning fuels for hybrid propulsion and decomposition of nitrous oxide for space propulsion.

  • Mark A. Cappelli

    Mark A. Cappelli

    Professor of Mechanical Engineering

    BioProfessor Cappelli received his B.Sc. degree in Physics (McGill, 1980), and M.A.Sc and Ph.D. degrees in Aerospace Sciences (Toronto, 1983, 1987). He joined Stanford University in 1987 and is currently a Professor in the Department of Mechanical Engineering and Co-Director of the Engineering Physics Program. He carries out research in applied plasma physics with applications to a broad range of fields, including space propulsion, aerodynamics, medicine, materials synthesis, and fusion.

  • J. Edward Carryer

    J. Edward Carryer

    Adjunct Professor

    BioEd Carryer graduated from the Illinois Institute of Technology in 1975 with a BSE as a member of the first graduating class of the Education and Experience in Engineering Program. This innovative project-based learning program taught him that he could learn almost anything that he needed to know and set him on a path of lifelong learning. That didn’t, however, keep him from going back to school.

    Upon completion of his Master’s Degree in Bio-Medical Engineering at the University of Wisconsin Madison in 1978, he was seduced by his love of cars, and instead of going into medical device design, he went to work for Ford on the 1979 Turbocharged Mustang. In later programs at Ford, he got to apply the background that he had gained in electronics and microcontrollers during his graduate work to the 1983 Turbocharged Mustang and Thunderbird and the 1984 SVO Mustang. After leaving Ford, Ed worked on the design and implementation of engine control software for GM and on a stillborn development program to put a turbocharged engine into the Renault Alliance at AMC before deciding to return once again to school. At Stanford University, he did research in the engine lab and earned his PhD in 1992.

    While working on his PhD, Ed got involved in teaching the graduate course sequence in mechatronics that is known at Stanford as Smart Product Design. He took over teaching the courses first part time in 1989, then full time after completing his PhD. In teaching mechatronics, Ed seems to have found his calling. The integration of mechanical, electronic, and software design with teaching others how to use all of this to make new products hits all his buttons. He is currently a Consulting Professor and the Director of the Smart Product Design Lab (SPDL). He teaches graduate courses in mechatronics in the Mechanical Engineering department and an undergraduate course in mechatronics in the Electrical Engineering department.

    Since 1984, Ed has maintained a consultancy focused on helping firms apply electronics and software in the creation of integrated electromechanical solutions (in 1984, almost no one was using the term mechatronics).The projects that he has worked on include an engine controller for an outboard motor manufacturer, an automated blood gas analyzer, a turbocharger boost control system for a new type of turbocharger, and a heated glove for arctic explorers. His most recent project involved using ZigBee radios and local structural model evaluation to create a wireless network of intelligent sensors to monitor and evaluate the structural health of buildings and transportation infrastructure.

  • Dennis R Carter

    Dennis R Carter

    Professor of Mechanical Engineering, Emeritus

    Current Research and Scholarly InterestsProfessor Carter studies the influence of mechanical loading upon the growth, development, regeneration, and aging of skeletal tissues. Basic information from such studies is used to understand skeletal diseases and treatments. He has served as President of the Orthopaedic Research Society and is a Fellow of the American Institute for Medical and Biological Engineering.

  • Ovijit Chaudhuri

    Ovijit Chaudhuri

    Assistant Professor of Mechanical Engineering

    BioOur group's research is focused at the intersection of mechanics and biology. We are interested in elucidating the underlying molecular mechanisms that give rise to the complex mechanical properties of cells, extracellular matrices, and tissues . Conversely, we are investigating how complex mechanical cues influence important biological processes such as cell division, differentiation, or cancer progression. Our approaches involve using force measurement instrumentation, such as atomic force microscopy, to exert and measure forces on materials and cells at the nanoscale, and the development of material systems for 3D cell culture that allow precise and independent manipulation of mechanical properties.

  • Helen L. Chen

    Helen L. Chen

    Research Scientist

    BioHelen L. Chen is a research scientist in the Designing Education Lab in the Department of Mechanical Engineering at Stanford University. She holds an undergraduate degree in communication from UCLA and a PhD in communication with a minor in psychology from Stanford. Helen is a board member for the Association for Authentic, Experiential and Evidence-Based Learning (AAEEBL) and is a co-author of Documenting Learning with ePortfolios: A Guide for College Instructors and co-executive editor of the International Journal of ePortfolio. She works closely with the Association of American Colleges and Universities and consults with institutions on general education redesign, authentic assessment approaches, design thinking, and personal branding and ePortfolios. Helen's current research and scholarship focus on engineering and entrepreneurship education; the pedagogy of portfolios and reflective practice in higher education; and redesigning how learning is recorded and recognized in traditional transcripts and academic credentials.

  • William Cockayne

    William Cockayne

    Lecturer

    BioBill is an innovation evangelist, inventor, and member of Stanford Design.

    A long-time Lecturer in the School of Engineering, he currently leads the Stanford Foresight research program, the university’s Silicon Valley Innovation Academy, the Moonshot Garage, and his award-winning course series to “design the future”, ME410ABC Foresight & Innovation.

    Across these programs, Bill empowers students to practice building the better future we all want, by converting long-range, technology-enabled visions into today’s radical innovations. This work has been scaled from a small emerging technology research focus (in partnership with Dr. John Feland) to become the long-running ME410 course series, which provided a stepping stone in the late 00s to power Stanford University’s Silicon Valley Innovation Academy with Dr. Tamara Carleton, which develops and launches over two-hundred moonshot leaders each year to tackle game-changing opportunities across the globe. He and his team now lead the Moonshot Alliance, a global expansion of these innovation-enabling programs, which has it’s own Moonshot Garage at Stanford.

    The culmination of Stanford Foresight’s early work in vision-led innovation is available in “The Playbook for Strategic Foresight and Innovation—A Hands-on Guide for Modeling, Designing and Leading Your Company's Next Radical Innovation” authored by Dr. Carleton, which can be downloaded as a free PDF from https://www.innovation.io/playbook and found in print at Amazon.

    Companies that Bill has worked with run the gamut: [As an employee] Apple Computer, DaimlerBenz Research & Technology, Eastman Kodak, SK Telecom; [That he founded] Scout Electromedia, Handstand; [Collaborated on foresight-led innovation] Airbus Group, Aalto University, Bank of the West, Crown Confectionery Co., Deutsche Bahn, Deutsche Bank, Forbes Marshall, Fortum, Institute for the Future (IFTF), Luleå University of Technology, Mahindra, Microsoft, Panasonic Corporation , Royal Institute of Technology [KTH], Sweden, Samsung Electronics, SAP, SKF Group, South Africa Energy Sector Education & Training Authority (ESETA), South Africa Services Sector Education and Training Authority (SSETA), South Africa Transport Education & Training Authority (TETA), Tata Chemicals Ltd., Tekes, UPM, Volkswagen/Audi, Volvo Aero, Volvo Construction Equipment (CE), Volvo IT, YLE, and likely a handful more.

    Bill holds a Doctorate in Mechanical Engineering – Design from Stanford University where he was a researcher in the Center for Design Research studying the emergence of new ideas and new teams in Silicon Valley’s innovation ecosystem with Professors Larry Leifer, Woody Powell, and Steve Barley, and a Master in Computer Science from the Naval Postgraduate School where he was part of the ground-breaking NPSnet lab under Professor Mike Zyda, a researcher on Dr. Rick Satava’s DARPA Advanced Biomedical Training Program seeking to immerse a person wholly into virtual reality using two-handed haptics and omni-directional treadmills, and a co-founder of the Modelling, Virtual Environments, and Simulations degree which brought together the school’s Computer Science and Operations Research expertise.

  • Steven Hartley Collins

    Steven Hartley Collins

    Associate Professor of Mechanical Engineering

    BioSteve Collins is an Associate Professor of Mechanical Engineering at Stanford University, where he teaches courses on design and robotics and directs the Stanford Biomechatronics Laboratory. His primary focus is to speed and systematize the design and prescription of prostheses and exoskeletons using versatile device emulator hardware and human-in-the-loop optimization algorithms (Zhang et al. 2017, Science). Another interest is efficient autonomous devices, such as highly energy-efficient walking robots (Collins et al. 2005, Science) and exoskeletons that use no energy yet reduce the metabolic energy cost of human walking (Collins et al. 2015, Nature).

    Prof. Collins received his B.S. in Mechanical Engineering in 2002 from Cornell University, where he performed research on passive dynamic walking robots with Andy Ruina. He received his Ph.D. in Mechanical Engineering in 2008 from the University of Michigan, where he performed research on the dynamics and control of human walking with Art Kuo. He performed postdoctoral research on humanoid robots with Martijn Wisse at T. U. Delft in the Netherlands. He was a professor of Mechanical Engineering and Robotics at Carnegie Mellon University for seven years. In 2017, he joined the faculty of Mechanical Engineering at Stanford University.

    Prof. Collins is a member of the Scientific Board of Dynamic Walking and the Editorial Board of Science Robotics. He has received the Young Scientist Award from the American Society of Biomechanics, the Best Medical Devices Paper from the International Conference on Robotics and Automation, and the student-voted Professor of the Year in his department.

  • Mark Cutkosky

    Mark Cutkosky

    Fletcher Jones Chair in the School of Engineering

    BioCutkosky applies analyses, simulations, and experiments to the design and control of robotic hands, tactile sensors, and devices for human/computer interaction. In manufacturing, his work focuses on design tools for rapid prototyping.

  • John Dabiri

    John Dabiri

    Professor

    Current Research and Scholarly InterestsThe Dabiri Lab conducts research at the intersection of fluid mechanics, energy and environment, and biology.

  • Eric Darve

    Eric Darve

    Professor of Mechanical Engineering

    Current Research and Scholarly InterestsProfessor Darve's research is focused on the development of numerical methods for high-performance scientific computing, numerical linear algebra, fast algorithms, parallel computing, and machine learning with applications in engineering.

  • David Davidson

    David Davidson

    Sr Research Engineer, Mechanical Engineering

    BioEducation
    University of Toronto Physics B.S (1978)
    University of Toronto Aerospace Sciences M.Sc. (1980)
    York University Physics Ph.D. (1986)

    Appointment:
    1986-present Senior Research Engineer, Mechanical Engineering Department

    Research Activities:
    Dr. Davidson’s research interests span the fields of gas dynamics and combustion kinetics. During his tenure at Stanford University he has developed a wide array of optical and laser-based diagnostic methods for combustion chemistry and propulsion studies and has advanced the use of these diagnostics in shock tubes. He currently manages the shock tube operations in the High Temperature Gasdynamics Laboratories at Stanford University and actively mentors the approximately two dozen graduate students who use these facilities. He is a co-author of over 200 research publications and has been a member of the editorial advisory board for the International Journal of Chemical Kinetics and secretary of the Western States Section of the Combustion Institute.
    An overview of the shock tube studies performed at Stanford under Prof. Hanson’s and Dr. Davidson’s supervision can be found in the six volumes entitled “Fundamental Kinetics Database Utilizing Shock Tube Measurements” available at http://purl.stanford.edu/kb621cw6967.

  • Scott L. Delp, Ph.D.

    Scott L. Delp, Ph.D.

    James H. Clark Professor in the School of Engineering, Professor of Bioengineering, of Mechanical Engineering and, by courtesy, of Orthopaedic Surgery

    Current Research and Scholarly InterestsExperimental and computational approaches to study human movement. Development of biomechanical models to analyze muscle function, study movement abnormalities, design new medical products, and guide surgery. Imaging technology development including MRI and microendoscopy. Biomedical technology development.

  • John Eaton

    John Eaton

    Charles Lee Powell Foundation Professor in the School of Engineering

    BioEaton uses experiments and computational simulations to study the flow and heat transfer in complex turbulent flows, especially those relevant to turbomachinery, particle-laden flows, and separated flows, and to develop new techniques for precise control of gas and surface temperature during manufacturing processes.

  • Christopher Edwards

    Christopher Edwards

    Professor of Mechanical Engineering and Senior Fellow at the Precourt Institute for Energy

    BioThe Edwards research group is focused on fundamental research for advanced energy technologies. The group performs theoretical and experimental studies of energy transformations such that the conversion process can be made cleaner, more efficient, and more controllable than has been possible with traditional technologies. Applications include advanced transportation engines (piston and turbine) and advanced electric power generation with carbon mitigation.

  • Charbel Farhat

    Charbel Farhat

    Vivian Church Hoff Professor of Aircraft Structures, Professor of Mechanical Engineering and Director of the Army High Performance Computing Research Center

    Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design and analysis of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on the nonlinear aeroelasticity and flight dynamics of Micro Aerial Vehicles (MAVs) with flexible flapping wings and N+3 aircraft with High Aspect Ratio (HAR) wings, layout optimization and additive manufacturing of wing structures, supersonic inflatable aerodynamic decelerators for Mars landing, and the reliable automated carrier landing via model predictive control. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-physics problems, high-order embedded boundary methods, uncertainty quantification, probabilistic machine learning, and efficient projection-based model order reduction as well as other forms of physics-based machine learning for time-critical applications such as design, active control, and digital twins.

  • Rainer Fasching

    Rainer Fasching

    Adjunct Professor

    BioDr. Rainer Fasching is a technology executive and a consulting associate professor at Stanford University, where he teaches advanced electrochemical energy storage and sensor technologies. He has over 20 years of experience in electrochemical devices, micro fabrication technologies, and industrial product development. His work has been centered on the physics, materials and fabrication technologies of electrochemical systems such as sensors, batteries and associated materials, and fuel cells. Currently he has been leading the development of advanced energy storage technologies from concept to product at top tier startup companies. He holds over 30 issued and/or published patents and has authored more than 60 publications.

  • Sean Follmer

    Sean Follmer

    Assistant Professor of Mechanical Engineering and, by courtesy, of Computer Science

    Current Research and Scholarly InterestsHuman Computer Interaction, Haptics, Robotics, Human Centered Design

  • J. Christian Gerdes

    J. Christian Gerdes

    Professor of Mechanical Engineering and Senior Fellow at the Precourt Institute for Energy

    BioChris Gerdes is a Professor of Mechanical Engineering at Stanford University and Co-Director of the Center for Automotive Research at Stanford (CARS). His laboratory studies how cars move, how humans drive cars and how to design future cars that work cooperatively with the driver or drive themselves. When not teaching on campus, he can often be found at the racetrack with students, trying out their latest prototypes for the future. Vehicles in the lab include X1, an entirely student-built test vehicle; Niki, a Volkswagen GTI capable of turning a competitive lap time around the track without a human driver; and Marty, our electrified, automated, drifting DeLorean. Chris' interests in vehicle safety extend to ethics and government policy, having helped to develop the US Federal Automated Vehicle Policy while serving as the first Chief Innovation Officer of the US Department of Transportation.

  • Kenneth Goodson

    Kenneth Goodson

    Davies Family Provostial Professor, Senior Associate Dean for Faculty and Academic Affairs and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.

  • Wendy Gu

    Wendy Gu

    Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioThe Gu Group studies the mechanical behavior of nanomaterials. We work at the intersection of solid mechanics, materials science and nano-chemistry. We research the unique properties of nanoscale metals, ceramics and nano-architected composites in order to design strong, tough and lightweight structural materials, materials for extreme environments, and mechanically-actuated sensors. Our experimental tools include nanoindentation, electron microscopy, and colloidal synthesis.