School of Engineering

Showing 1-50 of 118 Results

  • Norbert Pelc

    Norbert Pelc

    Boston Scientific Applied Biomedical Engineering Professor, Professor of Bioengineering and of Radiology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsBroadly, Dr. Pelc is interested in the physics, engineering and mathematics of medical imaging, especially computed tomography, digital x-ray imaging, magnetic resonance imaging, and hybrid multimodality systems. His current research is concentrated in the development of computed tomography systems with higher image quality and dose efficiency, in the characterization of system performance, and in the development and validation of new clinical applications.

  • Kim Butts Pauly

    Kim Butts Pauly

    Professor of Radiology (General Radiology) and, by courtesy, of Bioengineering and of Electrical Engineering

    Current Research and Scholarly InterestsWe are investigating and developing, and applying focused ultrasound in neuromodulation, blood brain barrier opening, and ablation for both neuro and body applications.

  • Daniel Palanker

    Daniel Palanker

    Director of HEPL, Professor of Ophthalmology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsInteractions of electric field and light with biological cells and tissues and their applications to imaging, diagnostics, therapeutics and prosthetics, primarily in ophthalmology.
    Specific fields of interest:
    Electronic retinal prosthesis;
    Electronic enhancement of tear secretion;
    Electronic control of blood vessels;
    Non-damaging retinal laser therapy;
    Ultrafast laser surgery;
    Interferometric imaging of neural signals;
    Cell transplantation and retinal plasticity.

  • Vijay Pande

    Vijay Pande

    Henry Dreyfus Professor of Chemistry and Professor, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsThe central theme of our research is to develop and apply novel theoretical methods to understand the physical properties of biological molecules, such as proteins, nucleic acids, lipid membranes, and small molecule therapeutics (eg protein folding or lipid vesicle fusion). As these phenomena are complex, my research employs novel theoretical and computational techniques. We apply these methods to develop novel therapeutics for protein misfolding diseases, such as Alzheimer's Disease.

  • John M. Pauly

    John M. Pauly

    Reid Weaver Dennis Professor

    BioInterests include medical imaging generally, and magnetic resonance imaging (MRI) in particular. Current efforts are focused on medical applications of MRI where real-time interactive imaging is important. Two examples are cardiac imaging, and the interactive guidance of interventional procedures. Specific interests include rapid methods for the excitation and acquisition of the MR signal, and the reconstruction of images from the data acquired using these approaches.

  • Peter M Pinsky

    Peter M Pinsky

    Professor of Mechanical Engineering and, by courtesy, of Civil Engineering

    BioPinsky works in the theory and practice of computational mechanics with a particular interest in multiphysics problems in biomechanics. His work uses the close coupling of techniques for molecular, statistical and continuum mechanics with biology, chemistry and clinical science. Areas of current interest include the mechanics of human vision (ocular mechanics) and the mechanics of hearing. Topics in the mechanics of vision include the mechanics of transparency, which investigates the mechanisms by which corneal tissue self-organizes at the molecular scale using collagen-proteoglycan-ion interactions to explain the mechanical resilience and almost perfect transparency of the tissue and to provide a theoretical framework for engineered corneal tissue replacement. At the macroscopic scale, advanced imaging data is used to create detailed models of the 3-D organization of collagen fibrils and the results used to predict outcomes of clinical techniques for improving vision as well as how diseased tissue mechanically degrades. Theories for mass transport and reaction are being developed to model metabolic processes and swelling in tissue. Current topics in the hearing research arena include multiscale modeling of hair-cell mechanics in the inner ear including physical mechanisms for the activation of mechanically-gated ion channels. Supporting research addresses the mechanics of lipid bilayer cell membranes and their interaction with the cytoskeleton. Recent past research topics include computational acoustics for exterior, multifrequency and inverse problems; and multiscale modeling of transdermal drug delivery. Professor Pinsky currently serves as Chair of the Mechanics and Computation Group within the Department of Mechanical Engineering at Stanford.

  • Jim Plummer

    Jim Plummer

    John M. Fluke Professor of Electrical Engineering and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsPlummer studies both the physics which govern device operation in silicon integrated circuits and the technology used to fabricate these circuits. Recent work is aimed at extending silicon device structures into nanoscale dimensions.His research also explores the scaling limits of silicon technology and the application of this technology outside traditional integrated circuits.

  • Balaji Prabhakar

    Balaji Prabhakar

    Professor of Electrical Engineering and of Computer Science and, by courtesy, of Management Science and Engineering and of Operations, Information and Technology at the Graduate School of Business

    BioPrabhakar's research focuses on the design, analysis, and implementation of data networks: both wireline and wireless. He has been interested in designing network algorithms, problems in ad hoc wireless networks, and designing incentive mechanisms. He has a long-standing interest in stochastic network theory, information theory, algorithms, and probability theory.

  • Arogyaswami Paulraj

    Arogyaswami Paulraj

    Professor (Research) of Electrical Engineering, Emeritus

    BioProfessor Emeritus Arogyaswami Paulraj, Stanford University, is a pioneer of MIMO wireless communications, a technology break through that enables improved wireless performance. MIMO is now incorporated into all new wireless systems.

    Paulraj is the author of over 400 research papers, two text books and a co-inventor in 66 US patents.
    Paulraj has won over a dozen awards, notably the Marconi Prize and Fellowship, 2014 and the IEEE Alexander Graham Bell Medal, 2011. He is a fellow of eight scientific / engineering national academies including the US, China, India and Sweden. He is a fellow of IEEE and AAAS.

    In 1999, Paulraj founded Iospan Wireless Inc. - which developed and established MIMO-OFDMA wireless as the core 4G technology. Iospan was acquired in by Intel Corporation in 2003. In 2004, he co-founded Beceem Communications Inc. The company became the market leader in 4G-WiMAX semiconductor and was acquired by Broadcom Corp. in 2010. In 2014 he founded Rasa Networks to develop Machine Learning tools for WiFi Networks. The company was acquired HPE in 2016.

    During his 30 years in the Indian (Navy) (1961-1991), he founded three national level laboratories in India and headed one of India’s most successful military R&D projects – APSOH sonar. He received over a dozen awards (many at the national level) in India including the Padma Bhushan, Ati Vishist Seva Medal and the VASVIK Medal.

  • Beth L. Pruitt

    Beth L. Pruitt

    Professor of Bioengineering and of Mechanical Engineering

    Current Research and Scholarly InterestsWe are interested in microscale mechanics and MEMS-based metrologies primarily for small scale mechanics sensing and acutation. Applied research focuses on systems development and characterization. Fundamental research questions focus on mechanotransduction and cellular biomechanics.

  • Piero Pianetta

    Piero Pianetta

    Professor (Research) of Photon Science and of Electrical Engineering

    BioPianetta's research is directed towards understanding how the atomic and electronic structure of semiconductor interfaces impacts device technology. His research includes the development of new analytical tools for these studies based on the use of synchrotron radiation. Recent projects include the development of ultrasensitive methods to analyze trace impurities on the surface of silicon wafers at levels as low as 1e-6 monolayer (~1e8 atoms/cm2) and the use of various photoelectron spectroscopies (X-ray photoemission, NEXAFS, X-ray standing waves and photoelectron diffraction) to determine the bonding and atomic structure at the interface between silicon and different passivating layers.

  • Friedrich Prinz

    Friedrich Prinz

    Finmeccanica Professor and Senior Fellow at the Precourt Institute for Energy

    BioFritz Prinz is the Finmeccanica Professor in the School of Engineering at Stanford University, Professor of Materials Science and Engineering, Professor of Mechanical Engineering and Senior Fellow at the Precourt Institute for Energy. He also serves as the Director of the Nanoscale Prototyping Laboratory at Stanford. A solid-state physicist by training, Prinz leads a group of doctoral students who are addressing fundamental issues on energy conversion and storage at the nanoscale. In his Laboratory, prototype fuel cells, solar cells and batteries are used to test new concepts and novel material structures using atomic layer deposition, scanning tunneling microscopy and other technologies. Prinz is also interested in learning from nature, particularly understanding the electron transport chain in plant cells. The Prinz group, in collaboration with biologist Arthur Grossman, were the first to extract electrons directly from plant cells subjected to light stimulus. Before coming to Stanford in 1994, he was on the faculty at Carnegie Mellon University. Prinz earned a PhD in physics at the University of Vienna in Austria.

  • Manu Prakash

    Manu Prakash

    Assistant Professor of Bioengineering

    BioWe are a curiosity driven research group working in the field of physical biology. Our approach brings together experimental and theoretical techniques from soft-condensed matter physics, fluid dynamics, theory of computation and unconventional micro and nano-fabrication to open problems in biology: from organismal to cellular and molecular scale. We design and build precision instrumentation including droplet microfluidic tools to probe and perturb biological machines and their synthetic analogues. Along the way, we invent novel technologies in global health context with clinical applications in extreme resource poor settings.

  • Andreas Paepcke

    Andreas Paepcke

    Sr Research Engineer, Computer Science

    BioDr. Andreas Paepcke is a Senior Research Scientist and Director for Data Analytics in support of online teaching efforts at Stanford University. His interests include user interfaces and systems for teaching and learning. He uses data analytics to create tools that benefit these online efforts. In the past Dr. Paepcke and his groups of students designed and implemented WebBase, an experimental storage and high speed dissemination system for Web content. Their work on small devices focused on novel methods for summarizing and transforming Web pages, and browsing images on small displays. Dr. Paepcke has served on numerous program committees, including a position as Vice Program Chair, heading the World-Wide Web Conference's 'Browsers and User Interfaces' program track, and as Program Chair for the Joint Conference on Digital Libraries 2008. He served on several National Science Foundation proposal evaluation panels and was co-founding associate editor of ACM Transactions on the Web. Dr. Paepcke received BS and MS degrees in applied mathematics from Harvard University, and a Ph.D. in Computer Science from the University of Karlsruhe, Germany. Previously, he worked as a researcher at Hewlett-Packard Laboratory, and as a research consultant at Xerox PARC. He has served on a number of technical advisory boards for startup companies.

  • R. Eric Phelts

    R. Eric Phelts

    Engr Res Assoc, Aeronautics and Astronautics

    BioR. Eric Phelts is a research engineer in the Department of Aeronautics and Astronautics at Stanford University. His research involves signal monitoring techniques and analysis for SBAS, GBAS, and ARAIM.

  • Serge Plotkin

    Serge Plotkin

    Associate Professor of Computer Science, Emeritus

    BioPlotkin's focus is on optimization problems that are encountered in the context of design, management, and maintenance of broadband communication networks. Currently his main effort in this area is concentrated on development of algorithms for network topology design, routing, capacity sizing, server placement, and fair resource allocation. His goal is to develop both offline strategies that can be used during network design stage, as well as online strategies that can be applied to optimize existing network infrastructure.

  • M Elisabeth Pate-Cornell

    M Elisabeth Pate-Cornell

    The Burton J. and DeeDee McMurtry Professor in the School of Engineering

    BioDr. Marie-Elisabeth Paté-Cornell is the Burt and Deedee McMurtry Professor in the School of Engineering and Professor and Founding Chair (2000-2011) of the Department of Management Science and Engineering at Stanford University. Her specialty is engineering risk analysis with application to complex systems (space, medical, offshore oil platforms, etc.). Her earlier research has focused on the optimization of warning systems and the explicit inclusion of human and organizational factors in the analysis of systems’ failure risks. Her recent work is on the use of game theory in risk analysis with applications that have included counter-terrorism, nuclear counter-proliferation problems and cyber security. She is the author of more than one hundred publications, and the co-editor of a book on Perspectives on Complex Global Problems (2016).

    She is a member of the National Academy of Engineering, of the French Académie des Technologies, of the NASA Advisory Council and of several boards including the Board of Advisors of the Naval Postgraduate School and the Navy War College. Dr. Paté-Cornell was a member of the President’s Foreign Intelligence Advisory Board from December 2001 to 2008, of the board of the Aerospace Corporation (2004-2013) of Draper Laboratory (2009-2016), and of InQtel (2006-2017). She holds a BS in Mathematics and Physics, Marseille (France), an Engineering degree (Applied Math/CS) from the Institut Polytechnique de Grenoble (France), an MS in Operations Research and a PhD in Engineering-Economic Systems, both from Stanford University.

  • Roy Pea

    Roy Pea

    Director, H-STAR, David Jacks Professor of Education and Professor, by courtesy, of Computer Science

    Current Research and Scholarly Interestslearning sciences focus on advancing theories, research, tools and social practices of technology-enhanced learning of complex domains

  • Richard Pantell

    Richard Pantell

    Professor of Electrical Engineering, Emeritus

    BioIn the past I have been interested in waves and diffusion in inhomogeneous or random media and in the mathematical analysis of multi-scale phenomena that arise in their study. Applications come from electromagnetic wave propagation in the atmosphere, underwater sound, waves in the lithosphere, diffusion in porous media, etc. I have studied both linear and nonlinear waves and diffusion, in both direct and inverse problems. I am now working on assessing multi-pathing effects in communication systems, especially when time reversal arrays are used. Another recent interest is financial mathematics, the use of asymptotics for stochastic equations in analyzing complex models of financial markets and in data analysis.

  • Eric Pop

    Eric Pop

    Associate Professor of Electrical Engineering and, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.

  • Bradford Parkinson

    Bradford Parkinson

    Edward C. Wells Professor in the School of Engineering, Emeritus

    BioProfessor Bradford Parkinson was the Chief Architect for GPS, and led the original advocacy for the system in 1973 as an Air Force Colonel. Gaining approval, he became the first Director of the GPS Joint Program Office and led the original development of spacecraft, Master Control Station and 8 types of User Equipment. He continued leadership of the Program through the extensive test validation Program, including being the Launch Commander for the first GPS satellite launches. This original deployment of GPS demonstrated comfortable margins against all PNT (Positioning, Navigation, and Timing) requirements.
    Earlier in his career, he was a key developer of a modernized AC-130 Gunship, introduction of which included 160 hours of combat missions. He was an instructor at the USAF Test Pilot School. In addition he led the Department of Astronautics and Computer Science at the US Air Force Academy. He retired from the US Air Force as a Colonel.
    He was appointed a Professor at Stanford University in 1984, after six years of experience in industry. At Stanford University, he led the development of many innovative applications of GPS, including:
    1.Commercial aircraft (Boeing 737) blind landing using GPS alone,
    2.Fully automatic GPS control of Farm Tractors on a rough field to an accuracy of 2 inches,
    3.Pioneering the augmentation to GPS (WAAS) that allows any user to achieve accuracies of 2 feet and very high levels of integrity assurance.
    He has been the CEO of two companies, and serves on many boards. He is the editor/author of the AIAA Award winning 2 Volumes: “GPS Theory and Applications” and is author or coauthor of over 80 technical papers.
    Among his many awards is the Draper Prize of the National Academy of Engineering, considered by some to be the “Engineering Nobel”.

  • Ada S. Y. Poon

    Ada S. Y. Poon

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsOur research focuses on providing theoretical foundations and engineering platforms for realizing electronics that seamlessly integrate with the body. Such systems will allow precise recording or modulation of physiological activity, for advancing basic scientific discovery and for restoring or augmenting biological functions for clinical applications.

  • Adrien Perkins

    Adrien Perkins

    Ph.D. Student in Aeronautics and Astronautics, admitted Autumn 2014

    Current Research and Scholarly InterestsAdrien is currently working on using UAVs to rapidly localize sources of GPS interference as well as successfully navigate in GPS denied environments.

  • Marco Pavone

    Marco Pavone

    Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioDr. Marco Pavone is an Assistant Professor of Aeronautics and Astronautics at Stanford University, where he also holds courtesy appointments in the Department of Electrical Engineering, in the Institute for Computational and Mathematical Engineering, and in the Information Systems Laboratory. He is a Research Affiliate at the NASA Jet Propulsion Laboratory (JPL), California Institute of Technology. Before joining Stanford, he was a Research Technologist within the Robotics Section at JPL. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. Dr. Pavone’s areas of expertise lie in the fields of controls and robotics.

    Dr. Pavone is a recipient of a NASA Early Career Faculty award, a Hellman Faculty Scholar Award, and was named NASA NIAC Fellow in 2011. At JPL, Dr. Pavone worked on the end-to-end optimization of the mission architecture for the Mars sample return mission. He has designed control algorithms for formation flying that have been successfully tested on board the International Space Station.

    Dr. Pavone is the Director of the Autonomous Systems Laboratory (ASL). The goal of ASL is the development of methodologies for the analysis, design, and control of autonomous systems, with a particular emphasis on large-scale robotic networks and autonomous aerospace vehicles. The lab combines expertise from control theory, robotics, optimization, and operations research to develop the theoretical foundations for networked autonomous systems operating in uncertain, rapidly-changing, and potentially adversarial environments. Theoretical insights are then used to devise practical, computationally-efficient, and provably-correct algorithms for field deployment. Applications include robotic transportation networks, sensor networks, agile control of spacecraft during proximity operations, and mobility platforms for extreme planetary environments. Collaborations with NASA centers are a key component of the research portfolio.

  • Allison Pitt

    Allison Pitt

    Ph.D. Student in Management Science and Engineering, admitted Autumn 2013

    BioAllison Pitt is a Ph.D. student in the Department of Management Science & Engineering at Stanford University.

    Research Area: Health Policy

  • J David Powell

    J David Powell

    Professor of Aeronautics and Astronautics and of Mechanical Engineering, Emeritus

    1960 - B.S. Mechanical Engineering, M.I.T.
    1966 - M.S. Aeronautics & Astronautics, Stanford
    1970 - Ph.D. Aeronautics & Astronautics, Stanford

    1960-1961 - Engine Design and Testing Engineer at Outboard Marine Corp.
    1961-1967 – Engineer at Lockheed in the field of Aerospace Guidance and Control
    1967-1968 – Engineer at Analytical Mechanics Associates
    1968-1970 – Engineer, Systems Control, Inc. Parameter ID of aircraft models from flight data, automatic generation of approach paths for Air Traffic Control. Attended Stanford University specializing in control systems.
    1971 – 1998 – Member of the Stanford Faculty in the Aeronautics and Astronautics Department. His research has included spacecraft pointing, space tether dynamics and control, internal combustion engine control, the design of aerospace digital flight control systems, GPS-based attitude determination augmented with inertial sensors, and the use of GPS for air and land vehicle surveillance and navigation. He taught courses in aerospace control including radio and inertial navigation, optimization and digital implementations and is a coauthor of two of the leading control textbooks. He is also an author or coauthor on over 100 papers.
    1998 – present – Emeritus faculty carrying out research in Aeronautics and Astronautics at Stanford Univ. Recent focus of research is the use of GPS-based attitude determination augmented with inertial sensors, applications of the FAA’s WAAS for enhanced pilot displays, flight inspection of aircraft landing systems, and the use of WAAS and new displays to enable closer spacing of parallel runways.

    AIAA (Fellow), ASME (Fellow), SAE, IEEE, ION

    CONSULTANT TO: (over past several years)
    Seagull Technology
    Sequoia Instruments
    Engine Control and Monitoring
    Transparent Networks
    Pratt and Whitney (Technical Advisory Committee)
    Sensor Platforms

    Co-Founder, CEO, and Director of GyroSat Corp. 1999 – 2000
    Director of Sequoia Instruments, 2001 – 2005
    Aircraft owner and licensed instrument pilot
    National Research Council Panel member for the review of NASA airspace activities, 2003
    Board of Directors, Mechanics Bank, Richmond, CA., 2003 – 2015
    Board of Directors, ExactBid, Inc. 2014-present.