School of Engineering
Showing 1-100 of 537 Results
-
Jijumon A. S.
Postdoctoral Scholar, Bioengineering
BioI am Jijumon, a biologist, mostly trained in molecular biology, cell biology, and protein biochemistry. Currently, I am a postdoctoral researcher in Manu Prakash's lab at Stanford University. I did my Bachelor's and Master's degrees in Biological Sciences at the Indian Institute of Science Education and Research-Kolkata (IISER-K). After that, I moved to Europe and worked in the BRC, Hungarian Academy of Sciences as an ITC fellow. There I did a one-year training course on contemporary experimental biology and state-of-the-art techniques, together with a project in sarcomeric actin regulation. In 2016, I moved to Paris and started my Ph.D. in Biological Sciences (Marie Curie fellow) in Carsten Janke's lab at Institut Curie, University of Paris-Saclay. My broader research interests are cytoskeleton, tool development, and proteomics. I use both biochemical and bioengineering tools to tackle my project. Beyond my academic pursuits, I enjoy activities such as reading, photography, shuttle badminton, and cycling.
-
Russ B. Altman
Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine, of Biomedical Data Science, Senior Fellow at the Stanford Institute for HAI and Professor, by courtesy, of Computer Science
Current Research and Scholarly InterestsI refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/
-
Rocky An
Ph.D. Student in Bioengineering, admitted Summer 2023
Ph.D. Minor, Electrical EngineeringBioI am currently working on the "calculus" of antigenic variations.
-
Eric Appel
Associate Professor of Materials Science and Engineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Pediatrics (Endocrinology) and of Bioengineering
Current Research and Scholarly InterestsThe underlying theme of the Appel Lab at Stanford University integrates concepts and approaches from supramolecular chemistry, natural/synthetic materials, and biology. We aim to develop supramolecular biomaterials that exploit a diverse design toolbox and take advantage of the beautiful synergism between physical properties, aesthetics, and low energy consumption typical of natural systems. Our vision is to use these materials to solve fundamental biological questions and to engineer advanced healthcare solutions.
-
Marta Arenas Jal
Postdoctoral Scholar, Bioengineering
BioMarta holds a PhD in pharmaceutical technology and an Executive MBA. She is passionate about healthcare research and innovation and has several years of experience in leading R&D projects within the pharmaceutical industry. Prior to joining Stanford Biodesign, Marta worked at CIMTI which is an accelerator for health startups that supports innovators to develop and implement solutions that improve healthcare quality and patient outcomes.
Throughout her career, she has demonstrated a strong track record of successfully translating research and innovation into real-world impact. She is a curious, creative, and open-minded person who is always seeking to solve complex problems in order to make a positive impact on patients’ lives. In her current role as Innovation Fellow at Stanford Byers Center for Biodesign, she is part of a team working on developing innovative solutions to address unmet needs in healthcare. -
Annelise E. Barron
Associate Professor of Bioengineering
Current Research and Scholarly InterestsBiophysical mechanisms of host defense peptides (a.k.a. antimicrobial peptides) and their peptoid mimics; also, molecular and cellular biophysics of human innate immune responses.
-
Takoua El Bejaoui
Research Associate, Program-Coleman, T.
Current Role at StanfordResearch and Design Engineer
-
Lacramioara Bintu
Assistant Professor of Bioengineering
BioLacra Bintu is an Assistant Professor in the Bioengineering Department at Stanford. Her lab performs single-cell and high-throughput measurements of chromatin and gene regulation dynamics, and uses these data to develop predictive models and improve mammalian cell engineering.
Lacra started working on the theory of gene regulation as an undergraduate with Jané Kondev from Brandeis University and Rob Phillips from Caltech. As a Physics PhD student in the lab of Carlos Bustamante at U.C. Berkeley, she used single-molecule methods to tease apart the molecular mechanisms of transcription through nucleosomes. She transitioned to studying the dynamics of epigenetic regulation in live cells during her postdoctoral fellowship with Michael Elowitz at Caltech. -
Kwabena Boahen
Professor of Bioengineering and of Electrical Engineering
Current Research and Scholarly InterestsBoahen's group analyzes neural behavior computationally to elucidate principles of neural design at the cellular, circuit, and systems levels; and synthesizes neuromorphic electronic systems that scale energy-use with size as efficiently as the brain does. This interdisciplinary research program bridges neurobiology and medicine with electronics and computer science, bringing together these seemingly disparate fields.
-
Jenn Brophy
Assistant Professor of Bioengineering
Current Research and Scholarly InterestsWe develop technologies that enable the genetic engineering of plants and their associated microbes with the goal of driving innovation in agriculture for a sustainable future. Our work is focused in synthetic biology and the reprogramming of plant development for enhanced environmental stress tolerance.
-
Cyan Brown
Postdoctoral Scholar, Bioengineering
BioCyan is a physician from Johannesburg, South Africa. She completed a master's in public health with a global health specialization through Kings College London. Her research focused on low-cost innovation in surgical care in low-and-middle-income countries. She is a lifelong Atlantic Institute fellow for health equity and services on the Atlantic Institute governing board. She is interested in global health innovation with a focus on creating more environmentally sustainable and equitable healthcare systems. She is currently a Biodesign Fellow at Stanford.
-
Zev Bryant
Associate Professor of Bioengineering and, by courtesy, of Structural Biology
Current Research and Scholarly InterestsMolecular motors lie at the heart of biological processes from DNA replication to vesicle transport. My laboratory seeks to understand the physical mechanisms by which these nanoscale machines convert chemical energy into mechanical work.
-
Xiangmeng (Shawn) Cai
Ph.D. Student in Bioengineering, admitted Summer 2022
BioI'm a Ph.D. student in bioengineering. My research interests include using engineering and computational methods to probe, measure, perturb, and predict chromosome organization and epigenetic dynamics.
-
David Camarillo
Associate Professor of Bioengineering and, by courtesy, of Neurosurgery and of Mechanical Engineering
BioDavid B. Camarillo is Associate Professor of Bioengineering, (by courtesy) Mechanical Engineering and Neurosurgery at Stanford University. Dr. Camarillo holds a B.S.E in Mechanical and Aerospace Engineering from Princeton University, a Ph.D. in Mechanical Engineering from Stanford University and completed postdoctoral fellowships in Biophysics at the UCSF and Biodesign Innovation at Stanford. Dr. Camarillo worked in the surgical robotics industry at Intuitive Surgical and Hansen Medical, before launching his laboratory at Stanford in 2012. His current research focuses on precision human measurement for multiple clinical and physiological areas including the brain, heart, lungs, and reproductive system. Dr. Camarillo has been awarded the Hellman Fellowship, the Office of Naval Research Young Investigator Program award, among other honors including multiple best paper awards in brain injury and robotic surgery. His research has been funded by the NIH, NSF, DoD, as well as corporations and private philanthropy. His lab’s research has been featured on NPR, the New York Times, The Washington Post, Science News, ESPN, and TED.com as well as other media outlets aimed at education of the public.
-
Anthony Cesnik
Postdoctoral Scholar, Bioengineering
BioI am focused on advancing our understanding of biology at the proteoform level, peering into the cellular machinery in a way that reveals precisely which molecular forms of proteins are acting in biological processes and systems. Recently, I have been working in Emma Lundberg’s lab on understanding how the expression of these molecules varies between individual cells in space and time. Emma Lundberg’s group has a wealth of experience in using microscopy to yield biological images that paint a picture of this cell-to-cell heterogeneity of protein expression information, and joining her lab has deepened my expertise in integrating datasets to perform innovative analyses of single-cell protein expression. I hope to extend this towards analyzing single-cell proteoform expression, understanding the heterogeneity and flux between these proteoforms in space and time, and digging into the fundamental insights about human biology these data may reveal.
-
Rahul Chajwa
Postdoctoral Scholar, Bioengineering
Current Research and Scholarly InterestsMy HFSP project is focussed on understanding the birth, life and death of marine snow. A predictive understanding of the hydrodynamic, biotic, and non-equilibrium aspects of this sinking microbial ecosystem is a notoriously challenging and globally relevant problem and is the central theme of my research at Stanford University. I’m applying my training as a physicist to shed light on the dynamical aspects of microbial life in the ocean, and to contribute insights that can help mitigate the negative impact of human activities on global climate; something I feel strongly about.
-
Ovijit Chaudhuri
Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsWe study the physics of cell migration, division, and morphogenesis in 3D, as well cell-matrix mechanotransduction, or the process by which cells sense and respond to mechanical properties of the extracellular matrices. For both these areas, we use engineered biomaterials for 3D culture as artificial extracellular matrices.
-
Wah Chiu
Wallenberg-Bienenstock Professor and Professor of Bioengineering and of Microbiology and Immunology
Current Research and Scholarly InterestsMy research includes methodology improvements in single particle cryo-EM for atomic resolution structure determination of molecules and molecular machines, as well as in cryo-ET of cells and organelles towards subnanometer resolutions. We collaborate with many researchers around the country and outside the USA on understanding biological processes such as protein folding, virus assembly and disassembly, pathogen-host interactions, signal transduction, and transport across cytosol and membranes.
-
Rastko Ciric
Ph.D. Student in Bioengineering, admitted Autumn 2018
BioThe "publication topics for this person" are algorithmically generated and do not reflect either current or previous research interests.
-
Stephen Clarke
Basic Life Research Scientist
BioStephen E. Clarke, PhD, is a postdoctoral scholar in the Brain Interfacing Lab, Department of Bioengineering. He obtained a BSc in Mathematics from the University of New Brunswick, and a PhD in Neuroscience from the University of Ottawa. His research draws on combined experimental and computational expertise to explore neuronal information processing on multiple scales, and across species. His long-term research goals involve application of closed-loop brain machine interface technologies as a platform for neurorehabilitation and repair in motor and cognitive systems, leveraging both insights from basic neuroscience and exciting new implant technologies.
Research Interests: Sensory and Motor Systems Neuroscience, Computational Neuroscience, Cellular and Molecular Neuroscience, Applied Mathematics, Neurorehabilitation and Repair. -
Jennifer R. Cochran
Senior Associate Vice Provost for Research, Addie and Al Macovski Professor and Professor of Bioengineering
Current Research and Scholarly InterestsMolecular Engineering, Protein Biochemistry, Biotechnology, Cell and Tissue Engineering, Molecular Imaging, Chemical Biology
-
Todd Coleman
Associate Professor of Bioengineering and, by courtesy, of Electrical Engineering
BioTodd P. Coleman is an Associate Professor in the Department of Bioengineering, and by courtesy, Electrical Engineering at Stanford University. He received B.S. degrees in electrical engineering (summa cum laude), as well as computer engineering (summa cum laude) from the University of Michigan (Go Blue). He received M.S. and Ph.D. degrees from MIT in electrical engineering and computer science. He did postdoctoral studies at MIT and Mass General Hospital in quantitative neuroscience. He previously was a faculty member in the Departments of Electrical & Computer Engineering and Bioengineering at the University of Illinois, Urbana-Champaign, and the University of California, San Diego, respectively. Dr. Coleman’s research is very multi-disciplinary, using tools from applied probability, physiology, and bioelectronics. Examples include, for instance, optimal transport methods in high-dimensional uncertainty quantification and developing technologies and algorithms to monitor and modulate physiology of the nervous systems in the brain and visceral organs. He has served as a Principal Investigator on grants from the NSF, NIH, Department of Defense, and multiple private foundations. Dr. Coleman is an inventor on 10 granted US patents. He has been selected as a Gilbreth Lecturer for the National Academy of Engineering, a TEDMED speaker, and a Fellow of IEEE as well as the American Institute for Medical and Biological Engineering. He recently served as Chair of the National Academies Standing Committee on Biotechnology Capabilities and National Security Needs.
-
Steven Hartley Collins
Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering
BioSteve Collins is an Associate Professor of Mechanical Engineering at Stanford University, where he teaches courses on design and robotics and directs the Stanford Biomechatronics Laboratory. His primary focus is to speed and systematize the design and prescription of prostheses and exoskeletons using versatile device emulator hardware and human-in-the-loop optimization algorithms (Zhang et al. 2017, Science). Another interest is efficient autonomous devices, such as highly energy-efficient walking robots (Collins et al. 2005, Science) and exoskeletons that use no energy yet reduce the metabolic energy cost of human walking (Collins et al. 2015, Nature).
Prof. Collins received his B.S. in Mechanical Engineering in 2002 from Cornell University, where he performed undergraduate research on passive dynamic walking robots. He received his Ph.D. in Mechanical Engineering in 2008 from the University of Michigan, where he performed research on the dynamics and control of human walking. He performed postdoctoral research on humanoid robots at T. U. Delft in the Netherlands. He was a professor of Mechanical Engineering and Robotics at Carnegie Mellon University for seven years. In 2017, he joined the faculty of Mechanical Engineering at Stanford University.
Prof. Collins is a member of the Scientific Board of Dynamic Walking and the Editorial Board of Science Robotics. He has received the Young Scientist Award from the American Society of Biomechanics, the Best Medical Devices Paper from the International Conference on Robotics and Automation, and the student-voted Professor of the Year in his department. -
Tyler Edward Cork
Ph.D. Student in Bioengineering, admitted Autumn 2018
Current Research and Scholarly InterestsCurrently, I am involved in two main projects. The first is developing 3D printing techniques to improve the accuracy of ex vivo geometrical and microstructural cardiac modeling from in vivo cardiac MR acquisitions. The second is applying machine learning applications to MRI data as a way to improve overall image quality and reduce acquisition time.
-
Markus Covert
Shriram Chair of the Department of Bioengineering, Professor of Bioengineering and, by courtesy, of Chemical and Systems Biology
Current Research and Scholarly InterestsOur focus is on building computational models of complex biological processes, and using them to guide an experimental program. Such an approach leads to a relatively rapid identification and validation of previously unknown components and interactions. Biological systems of interest include metabolic, regulatory and signaling networks as well as cell-cell interactions. Current research involves the dynamic behavior of NF-kappaB, an important family of transcription factors.