School of Engineering

Showing 1-100 of 265 Results

  • Guillermo Aboumrad Sidaoui

    Guillermo Aboumrad Sidaoui

    Ph.D. Student in Computational and Mathematical Engineering, admitted Summer 2018
    Other Tech - Graduate, Leadership Education & Athletic Advising Resources
    SU Student - Summer, School of Engineering - Student Affairs

    BioWillie was born and raised in Mexico City. He later moved to the UK to complete his high school studies. In the fall of 2014, Willie arrived at Stanford to begin his undergraduate career in Mathematics. Interested in applications of mathematical theory, he later gained admission to the Master's program at ICME. He is currently pursuing a doctoral degree under the advisory of Prof. Daniel Bump.

  • Christiane Marie Otten Adcock

    Christiane Marie Otten Adcock

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2018

    Current Research and Scholarly InterestsI research theoretical and computational methods to model, design, and control energy systems. These methods include computational fluid dynamics, uncertainty quantification, and high performance computing. Energy systems include wind turbines, vehicles, the electricity grid, and carbon sequestration. Currently, I am researching uncertainty quantification of numerical solutions to PDEs using Multilevel Monte Carlo and task-based parallel computing in the Uncertainty Quantification lab.

  • Alex Aiken

    Alex Aiken

    Alcatel-Lucent Professor in Communications and Networking and Professor of Particle Physics and Astrophysics and of Photon Science

    BioAlex Aiken is the Alcatel-Lucent Professor of Computer Science at Stanford. Alex received his Bachelors degree in Computer Science and Music from Bowling Green State University in 1983 and his Ph.D. from Cornell University in 1988. Alex was a Research Staff Member at the IBM Almaden Research Center (1988-1993) and a Professor in the EECS department at UC Berkeley (1993-2003) before joining the Stanford faculty in 2003. His research interest is in areas related to programming languages.

  • Juan Alonso

    Juan Alonso

    Vance D. and Arlene C. Coffman Professor

    BioProf. Alonso is the founder and director of the Aerospace Design Laboratory (ADL) where he specializes in the development of high-fidelity computational design methodologies to enable the creation of realizable and efficient aerospace systems. Prof. Alonso’s research involves a large number of different manned and unmanned applications including transonic, supersonic, and hypersonic aircraft, helicopters, turbomachinery, and launch and re-entry vehicles. He is the author of over 200 technical publications on the topics of computational aircraft and spacecraft design, multi-disciplinary optimization, fundamental numerical methods, and high-performance parallel computing. Prof. Alonso is keenly interested in the development of an advanced curriculum for the training of future engineers and scientists and has participated actively in course-development activities in both the Aeronautics & Astronautics Department (particularly in the development of coursework for aircraft design, sustainable aviation, and UAS design and operation) and for the Institute for Computational and Mathematical Engineering (ICME) at Stanford University. He was a member of the team that currently holds the world speed record for human powered vehicles over water. A student team led by Prof. Alonso also holds the altitude record for an unmanned electric vehicle under 5 lbs of mass.

  • Jing An

    Jing An

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2016

    BioI am a fourth-year PhD student in the Institute for Computational and Mathematical Engineering. I obtained my B.S. degree in Mathematics of Computation from the University of California, Los Angeles. Currently I am interested in applying machine learning methods into causal inference problems, and PDE analysis in mathematical biology and fluid mechanics.

  • Amin Arbabian

    Amin Arbabian

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsMy group's research covers RF circuits and system design for (1) biomedical, (2) sensing, and (3) Internet of Things (IoT) applications.

  • Ryan Michael Aronson

    Ryan Michael Aronson

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2018

    BioI am a second year PhD student in the Institute for Computational and Mathematical Engineering (ICME). I am mainly interested in developing numerical methods with applications to computational mechanics and fluid dynamics. I am particularly interested in high-order, structure-preserving, finite element, and isogeometric methods. Currently I am working with Professor Doug James in the area of fluid sound synthesis. Prior to coming to Stanford, I earned a B.S. in Aerospace Engineering Sciences at the University of Colorado Boulder, where I worked with Professor John Evans on residual-based variational multiscale turbulence modeling and isogeometric, structure-preserving collocation methods.

  • Amel Awadelkarim

    Amel Awadelkarim

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2017

    BioMy academic background is in Computational Fluid Dynamics, Finite Element Analysis, and Continuum Mechanics with an M.S. in Engineering Science and Mechanics from Penn State University. I am becoming more and more intrigued by data analytics & applying machine learning techniques to social sciences and networks.

    Outside of academia, my interests include consuming music at all times (digitally and at live shows), competing on various Ultimate Frisbee teams (Club and National levels), cooking, and generally exploring the surrounding area.

  • Jeremy Bailenson

    Jeremy Bailenson

    Thomas More Storke Professor, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Education

    BioJeremy Bailenson is founding director of Stanford University’s Virtual Human Interaction Lab, Thomas More Storke Professor in the Department of Communication, Professor (by courtesy) of Education, Professor (by courtesy) Program in Symbolic Systems, a Senior Fellow at the Woods Institute for the Environment, and a Faculty Leader at Stanford’s Center for Longevity. He earned a B.A. cum laude from the University of Michigan in 1994 and a Ph.D. in cognitive psychology from Northwestern University in 1999. He spent four years at the University of California, Santa Barbara as a Post-Doctoral Fellow and then an Assistant Research Professor.

    Bailenson studies the psychology of Virtual and Augmented Reality, in particular how virtual experiences lead to changes in perceptions of self and others. His lab builds and studies systems that allow people to meet in virtual space, and explores the changes in the nature of social interaction. His most recent research focuses on how virtual experiences can transform education, environmental conservation, empathy, and health. He is the recipient of the Dean’s Award for Distinguished Teaching at Stanford.

    He has published more than 100 academic papers, in interdisciplinary journals such as Science, the Journal of the American Medical Association, and PLoS One, as well domain-specific journals in the fields of communication, computer science, education, environmental science, law, marketing, medicine, political science, and psychology. His work has been continuously funded by the National Science Foundation for 15 years.

    Bailenson consults pro bono on Virtual Reality policy for government agencies including the State Department, the US Senate, Congress, the California Supreme Court, the Federal Communication Committee, the U.S. Army, Navy, and Air Force, the Department of Defense, the Department of Energy, the National Research Council, and the National Institutes of Health.

    His first book Infinite Reality, co-authored with Jim Blascovich, was quoted by the U.S. Supreme Court outlining the effects of immersive media. His new book, Experience on Demand, was reviewed by The New York Times, The Wall Street Journal, The Washington Post, Nature, and The Times of London, and was an Amazon Best-seller.

    He has written opinion pieces for The Washington Post, CNN, PBS NewsHour, Wired, National Geographic, Slate, The San Francisco Chronicle, and The Chronicle of Higher Education, and has produced or directed five Virtual Reality documentary experiences which were official selections at the Tribeca Film Festival. His lab’s research has exhibited publicly at museums and aquariums, including a permanent installation at the San Jose Tech Museum.

  • Peter Bailis

    Peter Bailis

    Assistant Professor of Computer Science

    BioPeter Bailis is an assistant professor of Computer Science at Stanford University. Peter's research in the Future Data Systems group focuses on the design and implementation of next-generation, post-database data-intensive systems. His work spans large-scale data management, distributed protocol design, and architectures for high-volume complex decision support. He is the recipient of an NSF Graduate Research Fellowship, a Berkeley Fellowship for Graduate Study, best-of-conference citations for research appearing in both SIGMOD and VLDB, and the CRA Outstanding Undergraduate Researcher Award. He received a Ph.D. from UC Berkeley in 2015 and an A.B. from Harvard College in 2011, both in Computer Science.

  • Corinne Beck

    Corinne Beck

    Affiliates & Partners Program Manager, Institute for Computational and Mathematical Engineering (ICME)

    Current Role at StanfordPrograms Manager
    Institute for Computational & Mathematical Engineering (ICME)
    School of Engineering

  • Biondo Biondi

    Biondo Biondi

    Barney and Estelle Morris Professor

    Current Research and Scholarly InterestsResearch
    My students and I devise new algorithms to improve the imaging of reflection seismic data. Images obtained from seismic data are the main source of information on the structural and stratigraphic complexities in Earth's subsurface. These images are constructed by processing seismic wavefields recorded at the surface of Earth and generated by either active-source experiments (reflection data), or by far-away earthquakes (teleseismic data). The high-resolution and fidelity of 3-D reflection-seismic images enables oil companies to drill with high accuracy for hydrocarbon reservoirs that are buried under two kilometers of water and up to 15 kilometers of sediments and hard rock. To achieve this technological feat, the recorded data must be processed employing advanced mathematical algorithms that harness the power of huge computational resources. To demonstrate the advantages of our new methods, we process 3D field data on our parallel cluster running several hundreds of processors.

    I teach a course on seismic imaging for graduate students in geophysics and in the other departments of the School of Earth Sciences. I run a research graduate seminar every quarter of the year. This year I will be teaching a one-day short course in 30 cities around the world as the SEG/EAGE Distinguished Instructor Short Course, the most important educational outreach program of these two societies.

    Professional Activities
    2007 SEG/EAGE Distinguished Instructor Short Course (2007); co-director, Stanford Exploration Project (1998-present); founding member, Editorial Board of SIAM Journal on Imaging Sciences (2007-present); member, SEG Research Committee (1996-present); chairman, SEG/EAGE Summer Research Workshop (2006)

  • Stephen Boyd

    Stephen Boyd

    Samsung Professor in the School of Engineering and Professor, by courtesy, of Computer Science and of Management Science and Engineering

    BioStephen P. Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering in the Information Systems Laboratory at Stanford University. He has courtesy appointments in the Department of Management Science and Engineering and the Department of Computer Science, and is member of the Institute for Computational and Mathematical Engineering. His current research focus is on convex optimization applications in control, signal processing, machine learning, and finance.

    Professor Boyd received an AB degree in Mathematics, summa cum laude, from Harvard University in 1980, and a PhD in EECS from U. C. Berkeley in 1985. In 1985 he joined Stanford's Electrical Engineering Department. He has held visiting Professor positions at Katholieke University (Leuven), McGill University (Montreal), Ecole Polytechnique Federale (Lausanne), Tsinghua University (Beijing), Universite Paul Sabatier (Toulouse), Royal Institute of Technology (Stockholm), Kyoto University, Harbin Institute of Technology, NYU, MIT, UC Berkeley, CUHK-Shenzhen, and IMT Lucca. He holds honorary doctorates from Royal Institute of Technology (KTH), Stockholm, and Catholic University of Louvain (UCL).

    Professor Boyd is the author of many research articles and four books: Introduction to Applied Linear Algebra: Vectors, Matrices, and Least-Squares (with Lieven Vandenberghe, 2018), Convex Optimization (with Lieven Vandenberghe, 2004), Linear Matrix Inequalities in System and Control Theory (with El Ghaoui, Feron, and Balakrishnan, 1994), and Linear Controller Design: Limits of Performance (with Craig Barratt, 1991). His group has produced many open source tools, including CVX (with Michael Grant), CVXPY (with Steven Diamond) and Convex.jl (with Madeleine Udell and others), widely used parser-solvers for convex optimization.

    Professor Boyd has received many awards and honors for his research in control systems engineering and optimization, including an ONR Young Investigator Award, a Presidential Young Investigator Award, and the AACC Donald P. Eckman Award. In 2013, he received the IEEE Control Systems Award, given for outstanding contributions to control systems engineering, science, or technology. In 2012, Michael Grant and he were given the Mathematical Optimization Society's Beale-Orchard-Hays Award, for excellence in computational mathematical programming. He is a Fellow of the IEEE, SIAM, and INFORMS, a Distinguished Lecturer of the IEEE Control Systems Society, a member of the US National Academy of Engineering, a foreign member of the Chinese Academy of Engineering, and a foreign member of the National Academy of Engineering of Korea. He has been invited to deliver more than 90 plenary and keynote lectures at major conferences in control, optimization, signal processing, and machine learning.

    He has developed and taught many undergraduate and graduate courses, including Signals & Systems, Linear Dynamical Systems, Convex Optimization, and a recent undergraduate course on Matrix Methods. His graduate convex optimization course attracts around 300 students from more than 20 departments. In 1991 he received an ASSU Graduate Teaching Award, and in 1994 he received the Perrin Award for Outstanding Undergraduate Teaching in the School of Engineering. In 2003, he received the AACC Ragazzini Education award, for contributions to control education, with citation: “For excellence in classroom teaching, textbook and monograph preparation, and undergraduate and graduate mentoring of students in the area of systems, control, and optimization.” In 2016 he received the Walter J. Gores award, the highest award for teaching at Stanford University. In 2017 he received the IEEE James H. Mulligan, Jr. Education Medal, for a career of outstanding contributions to education in the fields of interest of IEEE, with citation "For inspirational education of students and researchers in the theory and application of optimization."

  • Steven Brill

    Steven Brill

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2016

    BioI am a second year PhD student in the Institute for Computational and Mathematical Engineering (ICME). I am interested in computational fluid dynamics, higher order methods for numerical PDEs, and high performance computing. I earned my bachelor's degree in mechanical engineering at the University of Notre Dame. I am originally from Cincinnati, Ohio. In my free time I enjoy juggling, hiking, and college football.

  • Leticia Britos Cavagnaro

    Leticia Britos Cavagnaro

    Adjunct Professor

    BioLeticia Britos Cavagnaro, Ph.D., is co-Director of the University Innovation Fellows, a program of the Hasso Plattner Institute of Design (, which empowers students to be co-designers of their education, in collaboration with faculty and leaders at their schools. Leticia was Deputy Director of the National Center for Engineering Pathways to Innovation (Epicenter), an NSF-funded initiative that operated from 2011 to 2016 to foster innovation and entrepreneurship in engineering education nationwide. She is an adjunct professor at the, where she teaches Stanford students of all disciplines how to build their creative confidence to become engines of innovation in teams and organizations. Leticia has a Ph.D. in Developmental Biology from Stanford's School of Medicine, and is a former member of the Research in Education & Design Lab (REDlab) at Stanford’s School of Education. Having witnessed the journey of students who are transformed by their experience at the, bringing design thinking to more people beyond Stanford has become a priority for Leticia, and she has worked with hundreds of educators and students of all ages, as well as corporate and non-profit leaders in the US and abroad. In the Summer of 2013, Leticia engaged thousands of people from over 130 countries in learning design thinking and applying the methodology to innovate in their contexts, via an experiential MOOC (

    Find out more about Leticia's work at:
    Designing for Change: Using social learning to understand organizational transformation (book about the UIF program):

    Connect with Leticia:
    Twitter: @LeticiaBritosC (

  • Carlos Bustamante

    Carlos Bustamante

    Professor of Biomedical Data Science, of Genetics and, by courtesy, of Biology
    On Leave from 07/01/2019 To 12/31/2020

    Current Research and Scholarly InterestsMy genetics research focuses on analyzing genome wide patterns of variation within and between species to address fundamental questions in biology, anthropology, and medicine. We focus on novel methods development for complex disease genetics and risk prediction in multi-ethnic settings. I am also interested in clinical data science and development of new diagnostics.I am also interested in disruptive innovation for healthcare including modeling long-term risk shifts and novel payment models.

  • Bruce Cahan

    Bruce Cahan


    BioBruce Cahan is a Lecturer in Stanford University's Management Science and Engineering Department, a Distinguished Scholar at Stanford's Human-Sciences and Technologies Advanced Research Institute's mediaX Program, and an active member of CodeX Fellow at Stanford’s Center for Legal Informatics. Bruce's course offerings at Stanford include Ethics of Finance and Financial Engineering (MS&E 148), Investing on the Buy Side of Wall Street (MS&E 449), Sustainable Banking (CEE 244A) and Redesigning Post-Disaster Finance ( pop out).. As an Ashoka Fellow through Urban Logic, Bruce is creating the Space Commodities Exchange, GoodBank™(IO), an independent teaching bank for high-transparency, impacts-aware commercial bankers, and other projects.

  • Léopold Cambier

    Léopold Cambier

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2015

    Current Research and Scholarly InterestsFast Sparse Linear Solvers

  • Emmanuel Candes

    Emmanuel Candes

    Barnum-Simons Chair in Math and Statistics, and Professor of Statistics and, by courtesy, of Electrical Engineering

    BioEmmanuel Candès is the Barnum-Simons Chair in Mathematics and Statistics, a professor of electrical engineering (by courtesy) and a member of the Institute of Computational and Mathematical Engineering at Stanford University. Earlier, Candès was the Ronald and Maxine Linde Professor of Applied and Computational Mathematics at the California Institute of Technology. His research interests are in computational harmonic analysis, statistics, information theory, signal processing and mathematical optimization with applications to the imaging sciences, scientific computing and inverse problems. He received his Ph.D. in statistics from Stanford University in 1998.

    Candès has received several awards including the Alan T. Waterman Award from NSF, which is the highest honor bestowed by the National Science Foundation, and which recognizes the achievements of early-career scientists. He has given over 60 plenary lectures at major international conferences, not only in mathematics and statistics but in many other areas as well including biomedical imaging and solid-state physics. He was elected to the National Academy of Sciences and to the American Academy of Arts and Sciences in 2014.

  • Gunnar Carlsson

    Gunnar Carlsson

    Ann and Bill Swindells Professor, Emeritus

    BioDr. Carlsson has been a professor of mathematics at Stanford University since 1991. In the last ten years, he has been involved in adapting topological techniques to data analysis, under NSF funding and as the lead PI on the DARPA “Topological Data Analysis” project from 2005 to 2010. He is the lead organizer of the ATMCS conferences, and serves as an editor of several Mathematics journals

  • Maureen Carroll

    Maureen Carroll


    BioMaureen Carroll, Ph.D., is the Founder of Lime Design and a lecturer at Stanford’s Hasso Plattner Institute of Design ( where she co-teaches Hacking Your Innovation Mindset and worked with the Fellowship Program as a Design Ally. She was the Director of REDlab, which conducts research on the intersection of design thinking and learning at Stanford University from 2008-2016 and received a National Science Foundation grant. She was also a lecturer in Stanford University’s Graduate School of Education, where she co-taught Educating Young STEM Thinkers – a course that integrated design thinking and STEM and gave Stanford students the opportunity to mentor East Palo Alto middle schoolers. Carroll is an ethnographer who has published research in Design Studies, The International Journal of Art & Design Education, The Journal of Research in STEM Education, The Journal of Pre-College Engineering Education Research, and and has a Ph.D. from the University of California at Berkeley in Education: Language, Literacy and Culture.

  • Carissa Carter

    Carissa Carter

    Adjunct Professor

    BioCarissa Carter is the Director of Teaching + Learning at the Stanford In this role she guides the development of the’s pedagogy, leads its instructors, and shapes its class offering. She teaches courses on the intersection of data and design, design for climate change, and maps and the visual sorting of information.

  • Ines Chami

    Ines Chami

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2018
    Masters Student in Computational and Mathematical Engineering, admitted Autumn 2016

    BioI am a second-year Masters student in the ICME data science program. Prior to joining Stanford, I studied mathematics and computer science at Ecole Centrale Paris. My research interests include computer vision, natural language processing and, more specifically, multimodal analysis. My previous research was focused on cross-modal information retrieval (image annotation and automated text-illustration). I am currently working on information extraction from semi-structured data (pdf tables) within the Hazy Research group led by Prof. Ré at Stanford.

  • Srabanti Chowdhury

    Srabanti Chowdhury

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsWide bandap materials & devices for RF, Power and energy efficient electronics

  • Casey Chu

    Casey Chu

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2016

    Current Research and Scholarly InterestsTheoretical foundations of inference.

  • John M. Cioffi

    John M. Cioffi

    Hitachi America Professor in the School of Engineering, Emeritus

    BioJohn M. Cioffi taught Stanford's graduate electrical engineering course sequence in digital communications for over 20 years from 1986 to 2008, when he retired to emeritus. Cioffi's research interests were in the theory of transmitting the highest possible data rates on a number of different communications channels, many of which efforts were spun out of Stanford through he and/or his many former PhD students to companies, most notably including the basic designed used worldwide on more than 500 million DSL connections. Cioffi also over saw the prototype developments for the worlds first cable modem and digital-audio broadcast system. Cioffi pioneering the use of remote management algorithms to improve (over the internet or cloud) both wireline (DSL) and wireless (Wi-Fi) physical-layer transmission performance, an area often known as Dynamic Spectrum Management or Dynamic Line Management. Cioffi was co-inventer on basic patents for vectored DSL transmission and optimized MIMO wireless transmission. In his early career, Cioffi developed the worlds first full-duplex voiceband data modem while at Bell Laboratories, and the worlds first adaptively equalized disk read channel while at IBM. His courses and research projects over the years centered on these areas.

  • Eric Darve

    Eric Darve

    Professor of Mechanical Engineering

    Current Research and Scholarly InterestsProfessor Darve's research is focused on the development of numerical methods for high-performance scientific computing, numerical linear algebra, fast algorithms, parallel computing, and machine learning with applications in engineering.

  • David Donoho

    David Donoho

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences

    BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.

    Research Statement:
    My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems.

  • Ron Dror

    Ron Dror

    Associate Professor of Computer Science and, by courtesy, of Molecular and Cellular Physiology and of Structural Biology

    Current Research and Scholarly InterestsMy lab’s research focuses on computational biology, with an emphasis on 3D molecular structure. We combine two approaches: (1) Bottom-up: given the basic physics governing atomic interactions, use simulations to predict molecular behavior; (2) Top-down: given experimental data, use machine learning to predict molecular structures and properties. We collaborate closely with experimentalists and apply our methods to the discovery of safer, more effective drugs.

  • Eric Dunham

    Eric Dunham

    Associate Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.

  • Philip Etter

    Philip Etter

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2017

    BioI'm is a third year PhD student in the Institute for Computational and Mathematical Engineering at Stanford University. My interests lie broadly in the realm of data science and computational mathematics, spanning machine learning, numerical linear algebra, theoretical computer science, and computational physics. In particular, my most recent research focuses on finding efficient methods to improve accuracy when solving linear systems with unstructured noise. My other research focuses on model order reduction, leveraging machine learning and linear algebra techniques to deliver massive performance boosts in many-query physics problems, e.g., Bayesian inference and uncertainty quantification, while simultaneously guaranteeing accurate results. I presented these techniques in talks at SIAM: CSE ’19 and at ICIAM ’19, and published in CMAME. In the past, I've also worked as a data science research intern at Sandia National Laboratories, a software engineering intern at Google, and a research contractor at Bell Labs.

    I received my undergraduate degree from Princeton, where I studied mathematics, computer science, and physics. While I was there, I wrote my undergraduate thesis on numerical methods for solitonic boson star evolution and ground state searching, graduating summa cum laude. Before that, I did some research in theoretical optics. And before that, I was interested in graph algorithms. But while I have a very broad background in mathematics and related fields, I'm particularly excited by finding ways of using data to accelerate computation, build fast approximation techniques, and make predictions about the future (and inferences about the present).

    Going forward, I want to continue to develop better and faster algorithms by bringing the power of data science to bear on interesting computational and statistical challenges.

    My other assorted interests include quantum physics, general relativity, computer graphics, and music.

    I prefer tabs to spaces, and vim to emacs.

  • Jonathan Fan

    Jonathan Fan

    Assistant Professor of Electrical Engineering and, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.

  • Charbel Farhat

    Charbel Farhat

    Vivian Church Hoff Professor of Aircraft Structures, Professor of Mechanical Engineering and Director of the Army High Performance Computing Research Center

    Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design and analysis of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on the nonlinear aeroelasticity and flight dynamics of Micro Aerial Vehicles (MAVs) with flexible flapping wings and N+3 aircraft with High Aspect Ratio (HAR) wings, layout optimization and additive manufacturing of wing structures, supersonic inflatable aerodynamic decelerators for Mars landing, and the reliable automated carrier landing via model predictive control. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-physics problems, high-order embedded boundary methods, uncertainty quantification, probabilistic machine learning, and efficient projection-based model order reduction as well as other forms of physics-based machine learning for time-critical applications such as design, active control, and digital twins.

  • Humera Fasihuddin

    Humera Fasihuddin

    Co-Director, University Innovation Fellows,

    BioHumera co-directs the University Innovation Fellows Program. She trains students to create lasting institutional impact that enhances the innovation and entrepreneurship ecosystem on campus.

    Prior to the University Innovation Fellows program, she worked for nonprofit VentureWell and led the creation of numerous programs including the organization’s first foray in advanced venture training workshops, which today account for over half of the 501c(3)’s income. Before that, she created innovation networks between industry and the University of Massachusetts Amherst under an NSF Partnership for Innovation grant.

    Humera began her career at the publicly-traded UK firm Rexam, serving as product manager in their precision coated materials subsidiary. Humera holds an M.B.A. from UMass Amherst and a B.S. from Smith College.

  • Ron Fedkiw

    Ron Fedkiw

    Professor of Computer Science

    BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.

  • Jordi Feliu Faba

    Jordi Feliu Faba

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2016

    BioI am a PhD student in the Institute for Computational and Mathematical Engineering (ICME). I was born and I received my education in Spain. I received my two Bachelor's degrees in Industrial Technology Engineering and in Civil Engineering at Universitat Politècnica de Catalunya (UPC) in Barcelona. In 2014 I moved for 6 months to France to finish my Bachelor's degree in Civil Engineering at Ecole Centrale de Nantes. Next, I returned to Barcelona to course a MSc in Civil Engineering at UPC and gain work experience in civil engineering. My research interests lie in the area of computational engineering.

  • Casey Fleeter

    Casey Fleeter

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2015

    BioI am a PhD student at Stanford University's Institute of Computational and Mathematical Engineering (ICME). I graduated from Harvard University in 2015 with a Bachelor of Arts in Physics. My research interests lie in the applications of mathematical methods to the cardiovascular system. My project in the Marsden Lab specifically utilizes techniques in uncertainty quantification.

  • Oliver Fringer

    Oliver Fringer

    Professor of Civil and Environmental Engineering

    BioFringer's research focuses on the development and application of numerical models and high-performance computational techniques to the study of fundamental processes that influence the dynamics of the coastal ocean, rivers, lakes, and estuaries.

  • Margot Gerritsen

    Margot Gerritsen

    Senior Associate Dean for Educational Affairs, Professor of Energy Resources Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Civil and Environmental Engineering

    Current Research and Scholarly InterestsResearch
    My work is about understanding and simulating complicated fluid flow problems. My research focuses on the design of highly accurate and efficient parallel computational methods to predict the performance of enhanced oil recovery methods. I'm particularly interested in gas injection and in-situ combustion processes. These recovery methods are extremely challenging to simulate because of the very strong nonlinearities in the governing equations. Outside petroleum engineering, I'm active in coastal ocean simulation with colleagues from the Department of Civil and Environmental Engineering, yacht research and pterosaur flight mechanics with colleagues from the Department of Mechanical and Aeronautical Engineering, and the design of search algorithms in collaboration with the Library of Congress and colleagues from the Institute of Computational and Mathematical Engineering.

    I teach courses in both energy related topics (reservoir simulation, energy, and the environment) in my department, and mathematics for engineers through the Institute of Computational and Mathematical Engineering (ICME). I also initiated two courses in professional development in our department (presentation skills and teaching assistant training), and a consulting course for graduate students in ICME, which offers expertise in computational methods to the Stanford community and selected industries.

    Professional Activities
    Senior Associate Dean, School of Earth, Energy and Environmental Sciences, Stanford (from 2015); Director, Institute for Computational and Mathematical Engineering, Stanford (from 2010); Stanford Fellow (2010-2012); Magne Espedal Professor II, Bergen University (2011-2014); Aldo Leopold Fellow (2009); Chair, SIAM Activity group in Geosciences (2007, present, reelected in 2009); Faculty Research Fellow, Clayman Institute (2008); Elected to Council of Society of Industrial and Applied Mathematics (SIAM) (2007); organizing committee, 2008 Gordon Conference on Flow in Porous Media; producer, Smart Energy podcast channel; Director, Stanford Yacht Research; Co-director and founder, Stanford Center of Excellence for Computational Algorithms in Digital Stewardship; Editor, Journal of Small Craft Technology; Associate editor, Transport in Porous Media; Reviewer for various journals and organizations including SPE, DoE, NSF, Journal of Computational Physics, Journal of Scientific Computing, Transport in Porous Media, Computational Geosciences; member, SIAM, SPE, KIVI, AGU, and APS

  • Kay Giesecke

    Kay Giesecke

    Professor of Management Science and Engineering

    Current Research and Scholarly InterestsKay is a financial engineer. He develops stochastic financial models, designs statistical methods for analyzing financial data, examines simulation and other numerical algorithms for solving the associated computational problems, and performs empirical analyses. Much of Kay's work is driven by important applications in areas such as credit risk management, investment management, and, most recently, housing finance.

  • Julia Gillespie

    Julia Gillespie

    Director of Finance and Operations, Institute for Computational and Mathematical Engineering (ICME)

    Current Role at StanfordI am the Director of Finance and Operations for the Institute for Computational Mathematics and Engineering within the School of Engineering.

  • Peter Glynn

    Peter Glynn

    Thomas W. Ford Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsStochastic modeling; statistics; simulation; finance

  • Abeynaya Gnanasekaran

    Abeynaya Gnanasekaran

    Ph.D. Student in Computational and Mathematical Engineering, admitted Autumn 2016

    BioI am a first year PhD student in the Institute for Computational and Mathematical engineering at Stanford University. My research interests broadly lie in Linear Algebra and optimization. I have a bachelors degree (with Honours) in Chemical engineering from Indian Institute of Technology Madras, India. My undergraduate research was in the area of Computational Microfluidics. Also I did a summer research internship in Process Control at EPFL, Switzerland.

    I was born and brought up in Neyveli, an industrial town in south India. I enjoy listening to Indian music and reading novels.

  • Ashish Goel

    Ashish Goel

    Professor of Management Science and Engineering and, by courtesy, of Computer Science

    BioAshish Goel is a Professor of Management Science and Engineering and (by courtesy) Computer Science at Stanford University. He received his PhD in Computer Science from Stanford in 1999, and was an Assistant Professor of Computer Science at the University of Southern California from 1999 to 2002. His research interests lie in the design, analysis, and applications of algorithms.

  • Andrea Goldsmith

    Andrea Goldsmith

    Stephen Harris Professor in the School of Engineering

    BioAndrea Goldsmith is the Stephen Harris professor in the School of Engineering and professor of Electrical Engineering at Stanford University. Her research interests are in information theory, communication theory, and signal processing, and their application to wireless communications, interconnected systems, and neuroscience. She co-founded and served as Chief Technical Officer and Board member of Plume WiFi and of Quantenna (QTNA), and she currently serves on the Board of Directors for Medtronic (MDT) and Crown Castle Inc. (CCI). She has also been a member or chair of the technical advisory boards for Quantenna (QTNA), Sequans (SQNS), Interdigital (IDCC) and Cohere. Goldsmith has launched and led several multi-university research projects including DARPA’s ITMANET program, and she is currently a Principle Investigator in the NSF Center on the Science of Information. Prior to Stanford she held positions at Caltech, Maxim Technologies, Memorylink Corporation, and AT&T Bell Laboratories. Dr. Goldsmith is a member of the National Academy of Engineering and the American Academy of Arts and Sciences, a Fellow of the IEEE and of Stanford, and has received several awards for her work, including the IEEE Eric E. Sumner Technical Field Award in Communications Technology, the ComSoc Edwin H. Armstrong Achievement Award as well as Technical Achievement Awards in Communications Theory and in Wireless Communications, the National Academy of Engineering Gilbreth Lecture Award, and the Silicon Valley/San Jose Business Journal’s Women of Influence Award. She is author of the book ``Wireless Communications'' and co-author of the books ``MIMO Wireless Communications'' and “Principles of Cognitive Radio,” all published by Cambridge University Press, as well as an inventor on 29 patents. She has served in various leadership roles in the IEEE and in industrial groups aimed at diversifying STEM fields, and is currently the founding chair of the IEEE Committee on Diversity, Inclusion, and Professional Ethics. At Stanford she has served as chair and a member of the Faculty Senate and on the Planning and Policy Board, Committee on Research, Commissions on Graduate Education and on Undergraduate Education, Task Force on Women and Leadership, and the Faculty Women's Forum Steering Committee. She currently serves on Stanford's Budget Group, Advisory Board, and in the Faculty Senate.

  • Kenneth Goodson

    Kenneth Goodson

    Davies Family Provostial Professor, Senior Associate Dean for Faculty and Academic Affairs and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.

  • Leonidas Guibas

    Leonidas Guibas

    Paul Pigott Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsGeometric and topological data analysis and machine learning. Algorithms for the joint analysis of collections of images, 3D models, or trajectories. 3D reconstruction.

  • Pat Hanrahan

    Pat Hanrahan

    Canon USA Professor in the School of Engineering and Professor of Electrical Engineering

    BioProfessor Hanrahan's current research involves rendering algorithms, high performance graphics architectures, and systems support for graphical interaction. He also has worked on raster graphics systems, computer animation and modeling and scientific visualization, in particular, volume rendering.

  • Kari Hanson

    Kari Hanson


    BioKari is a former technology executive with a passion for entrepreneurship, innovation, business strategy and making the world a better place. Having worked as a coach, investor, advisor, board member and CFO, she enjoys empowering students and entrepreneurs to thrive in life, the classroom and the marketplace.

    Kari is currently designing and co-teaching the ICME Analytics Accelerator, a project based research course for graduate students from multiple disciplines.

  • James Harris

    James Harris

    James and Elenor Chesebrough Professor in the School of Engineering, Emeritus

    BioHarris utilizes molecular beam epitaxy (MBE) of III-V compound semiconductor materials to investigate new materials for electronic and optoelectronic devices. He utilizes heterojunctions, superlattices, quantum wells, and three-dimensional self-assembled quantum dots to create metastable engineered materials with novel or improved properties for electronic and optoelectronic devices. He has recently focused on three areas: 1) integration of photonic devices and micro optics for creation of new minimally invasive bio and medical systems for micro-array and neural imaging and 2) application of nanostructures semiconductors for the acceleration of electrons using light, a dielectric Laser Accelerator (DLA), and 3) novel materials and nano structuring for high efficiency solar cells and photo electrochemical water splitting for the generation of hydrogen.

  • Jerry Harris

    Jerry Harris

    The Cecil H. and Ida M. Green Professor in Geophysics, Emeritus

    Current Research and Scholarly InterestsBiographical Information
    Jerry M. Harris is the Cecil and Ida Green Professor of Geophysics and Associate Dean for the Office of Multicultural Affairs. He joined Stanford in 1988 following 11 years in private industry. He served five years as Geophysics department chair, was the Founding Director of the Stanford Center for Computational Earth and Environmental Science (CEES), and co-launched Stanford's Global Climate and Energy Project (GCEP). Graduates from Jerry's research group, the Stanford Wave Physics Lab, work in private industry, government labs, and universities.

    My research interests address the physics and dynamics of seismic and electromagnetic waves in complex media. My approach to these problems includes theory, numerical simulation, laboratory methods, and the analysis of field data. My group, collectively known as the Stanford Wave Physics Laboratory, specializes on high frequency borehole methods and low frequency labratory methods. We apply this research to the characterization and monitoring of petroleum and CO2 storage reservoirs.

    I teach courses on waves phenomena for borehole geophysics and tomography. I recently introduced and co-taught a new course on computational geosciences.

    Professional Activities
    I was the First Vice President of the Society of Exploration Geophysicists in 2003-04, and have served as the Distinguished Lecturer for the SPE, SEG, and AAPG.

  • Trevor Hastie

    Trevor Hastie

    John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences

    Current Research and Scholarly InterestsFlexible statistical modeling for prediction and representation of data arising in biology, medicine, science or industry. Statistical and machine learning tools have gained importance over the years. Part of Hastie's work has been to bridge the gap between traditional statistical methodology and the achievements made in machine learning.

  • Grace H Hawthorne

    Grace H Hawthorne

    Adjunct Professor

    BioGRACE HAWTHORNE is an entrepreneur, artist, author and educator. She is the Founder/CEO of Paper Punk, an award winning creativity tool and toy for the 21st century, and Adjunct Professor at Stanford's Hasso Plattner Institute of Design (aka: the While she is building Paper Punk to be the LEGO of the 21st century, she teaches courses on creativity, failure and abstract-to-concrete and leads a groundbreaking research project on creative capacity building recently covered by Scientific America and Wired magazine.

    Previously, she cofounded ReadyMade, the culturally groundbreaking design magazine for GenXY. As its CEO/Publisher she showed people how to transform ordinary objects into extraordinary design and turned the hip indie startup into a nationally recognized lifestyle brand. She led the sale of ReadyMade to Meredith Corporation (NASDAQ: MDP) and continued as its President/Publisher. Grace co-authored the award winning book, ReadyMade: How to Make Almost Everything (Crown/Potter, Thames & Hudson).

    Prior to ReadyMade, Grace was a creative producer and business strategist in Hollywood for studios, talent agencies and privately held entertainment properties. Her artwork has been exhibited in several national museums including the Smithsonian Cooper-Hewitt Design Museum Triennial. She graduated cum laude in Art/Visual Communication from UC Berkeley and also holds an MBA from the Anderson School of Business at UCLA and an MFA from the UCLA School of Film and Television. Grace believes anything is possible and wants everyone to make cool things with their hands.