School of Engineering


Showing 181-190 of 301 Results

  • Dakota McCoy

    Dakota McCoy

    Postdoctoral Scholar, Materials Science and Engineering
    Casual - Non-Exempt, Recreation Instructional & Fitness

    BioDakota "Cody" McCoy is a Stanford Science Fellow (also supported by the NSF PRFB) who recently completed her PhD in Evolutionary Biology at Harvard University. Previously, she attended Oxford University as a Rhodes Scholar to study environmental policy. Combining applied physics with biological methods, she studies the functions and origins of optical adaptations in nature. For example, her work on “super black” birds and spiders has driven novel solar technology research, inspired recent studies of light manipulation in several animals, and will soon appear in a forthcoming United Nations booklet on bioinspiration. She also researches the unusual health risks of pregnancy for humans. Cody hails from Pittsburgh, greatest city in the USA, where she grew up with four siblings and four dogs.

  • Paul McIntyre

    Paul McIntyre

    Rick and Melinda Reed Professor, Professor of Photon Science and Senior Fellow at the Precourt Institute for Energy

    BioMcIntyre's group performs research on nanostructured inorganic materials for applications in electronics, energy technologies and sensors. He is best known for his work on metal oxide/semiconductor interfaces, ultrathin dielectrics, defects in complex metal oxide thin films, and nanostructured Si-Ge single crystals. His research team synthesizes materials, characterizes their structures and compositions with a variety of advanced microscopies and spectroscopies, studies the passivation of their interfaces, and measures functional properties of devices.

  • Celeste Melamed

    Celeste Melamed

    Postdoctoral Scholar, Materials Science and Engineering

    BioCeleste Melamed is a postdoctoral scholar with the Chueh group at Stanford. Her interests include ionics, structural chemistry and transport, and materials by design, with the overarching goal of a sustainable energy economy. She is currently developing thin film synthetic methods to investigate interfacial structure and evolution in solid-state battery materials. She received her PhD in Materials Science at Colorado School of Mines and the National Renewable Energy Laboratory in 2021, where she investigated the interplay between local and long-range structure in new ternary nitrides for optoelectronic applications. She received a B.S. in Physics from Harvey Mudd College in 2015.

  • L. Julian Mele

    L. Julian Mele

    Postdoctoral Scholar, Materials Science and Engineering

    BioJulian graduated in electrical engineering and received his PhD from the University of Udine (Italy). During his PhD, he worked on electrochemical modeling of performance and noise for electronic biosensors and bioactuators. Then he continued as a postdoctoral scholar in Prof. Palestri’s group, where he focused on modeling and simulations of conjugated polymers for bioelectronic applications. He joined Prof. Salleo's group in the fall of 2022 where he is contributing to the understanding of the physical operation of organic devices.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Jarod Meyer

    Jarod Meyer

    Ph.D. Student in Materials Science and Engineering, admitted Autumn 2020

    BioJarod is a PhD Student working on the Molecular Beam Epitaxy of Pb-salt, narrow-bandgap semiconductors for mid-IR optoelectronics.