School of Engineering

Showing 21-40 of 124 Results

  • Eric Darve

    Eric Darve

    Professor of Mechanical Engineering

    Current Research and Scholarly InterestsProfessor Darve's research is focused on the development of numerical methods for high-performance scientific computing, numerical linear algebra, fast algorithms, parallel computing, anomaly detection, and machine learning with applications in engineering.

  • David Donoho

    David Donoho

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences
    On Leave from 10/01/2020 To 06/30/2021

    BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.

    Research Statement:
    My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems.

  • Ron Dror

    Ron Dror

    Associate Professor of Computer Science and, by courtesy, of Molecular and Cellular Physiology and of Structural Biology

    Current Research and Scholarly InterestsMy lab’s research focuses on computational biology, with an emphasis on 3D molecular structure. We combine two approaches: (1) Bottom-up: given the basic physics governing atomic interactions, use simulations to predict molecular behavior; (2) Top-down: given experimental data, use machine learning to predict molecular structures and properties. We collaborate closely with experimentalists and apply our methods to the discovery of safer, more effective drugs.

  • Eric Dunham

    Eric Dunham

    Associate Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.

  • Jonathan Fan

    Jonathan Fan

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.

  • Charbel Farhat

    Charbel Farhat

    Vivian Church Hoff Professor of Aircraft Structures, Professor of Mechanical Engineering and Director of the Army High Performance Computing Research Center

    Current Research and Scholarly InterestsCharbel Farhat and his Research Group (FRG) develop mathematical models, advanced computational algorithms, and high-performance software for the design and analysis of complex systems in aerospace, marine, mechanical, and naval engineering. They contribute major advances to Simulation-Based Engineering Science. Current engineering foci in research are on the nonlinear aeroelasticity and flight dynamics of Micro Aerial Vehicles (MAVs) with flexible flapping wings and N+3 aircraft with High Aspect Ratio (HAR) wings, layout optimization and additive manufacturing of wing structures, supersonic inflatable aerodynamic decelerators for Mars landing, and the reliable automated carrier landing via model predictive control. Current theoretical and computational emphases in research are on high-performance, multi-scale modeling for the high-fidelity analysis of multi-physics problems, high-order embedded boundary methods, uncertainty quantification, probabilistic machine learning, and efficient projection-based model order reduction as well as other forms of physics-based machine learning for time-critical applications such as design, active control, and digital twins.

  • Ron Fedkiw

    Ron Fedkiw

    Professor of Computer Science

    BioFedkiw's research is focused on the design of new computational algorithms for a variety of applications including computational fluid dynamics, computer graphics, and biomechanics.

  • Oliver Fringer

    Oliver Fringer

    Professor of Civil and Environmental Engineering

    BioFringer's research focuses on the development and application of numerical models and high-performance computational techniques to the study of fundamental processes that influence the dynamics of the coastal ocean, rivers, lakes, and estuaries.

  • Margot Gerritsen

    Margot Gerritsen

    Professor of Energy Resources Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Civil and Environmental Engineering
    On Leave from 04/01/2021 To 06/30/2021

    Current Research and Scholarly InterestsResearch
    My work is about understanding and simulating complicated fluid flow problems. My research focuses on the design of highly accurate and efficient parallel computational methods to predict the performance of enhanced oil recovery methods. I'm particularly interested in gas injection and in-situ combustion processes. These recovery methods are extremely challenging to simulate because of the very strong nonlinearities in the governing equations. Outside petroleum engineering, I'm active in coastal ocean simulation with colleagues from the Department of Civil and Environmental Engineering, yacht research and pterosaur flight mechanics with colleagues from the Department of Mechanical and Aeronautical Engineering, and the design of search algorithms in collaboration with the Library of Congress and colleagues from the Institute of Computational and Mathematical Engineering.

    I teach courses in both energy related topics (reservoir simulation, energy, and the environment) in my department, and mathematics for engineers through the Institute of Computational and Mathematical Engineering (ICME). I also initiated two courses in professional development in our department (presentation skills and teaching assistant training), and a consulting course for graduate students in ICME, which offers expertise in computational methods to the Stanford community and selected industries.

    Professional Activities
    Senior Associate Dean, School of Earth, Energy and Environmental Sciences, Stanford (from 2015); Director, Institute for Computational and Mathematical Engineering, Stanford (from 2010); Stanford Fellow (2010-2012); Magne Espedal Professor II, Bergen University (2011-2014); Aldo Leopold Fellow (2009); Chair, SIAM Activity group in Geosciences (2007, present, reelected in 2009); Faculty Research Fellow, Clayman Institute (2008); Elected to Council of Society of Industrial and Applied Mathematics (SIAM) (2007); organizing committee, 2008 Gordon Conference on Flow in Porous Media; producer, Smart Energy podcast channel; Director, Stanford Yacht Research; Co-director and founder, Stanford Center of Excellence for Computational Algorithms in Digital Stewardship; Editor, Journal of Small Craft Technology; Associate editor, Transport in Porous Media; Reviewer for various journals and organizations including SPE, DoE, NSF, Journal of Computational Physics, Journal of Scientific Computing, Transport in Porous Media, Computational Geosciences; member, SIAM, SPE, KIVI, AGU, and APS

  • Kay Giesecke

    Kay Giesecke

    Professor of Management Science and Engineering
    On Partial Leave from 04/01/2021 To 06/30/2021

    Current Research and Scholarly InterestsKay is a financial technologist and engineer. He develops stochastic financial models, designs statistical methods for analyzing financial data, examines simulation and other numerical algorithms for solving the associated computational problems, and performs empirical analyses. Much of Kay's work is driven by important applications in areas such as credit risk management, investment management, and, most recently, housing finance.

  • Peter Glynn

    Peter Glynn

    Thomas W. Ford Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsStochastic modeling; statistics; simulation; finance

  • Ashish Goel

    Ashish Goel

    Professor of Management Science and Engineering and, by courtesy, of Computer Science

    BioAshish Goel is a Professor of Management Science and Engineering and (by courtesy) Computer Science at Stanford University. He received his PhD in Computer Science from Stanford in 1999, and was an Assistant Professor of Computer Science at the University of Southern California from 1999 to 2002. His research interests lie in the design, analysis, and applications of algorithms.

  • Andrea Goldsmith

    Andrea Goldsmith

    Stephen Harris Professor in the School of Engineering, Emerita

    BioAndrea Goldsmith is currently the Dean of Engineering and Applied Science at Princeton University. She was previously the Stephen Harris professor in the School of Engineering at Stanford until her retirement in 2020, where she is now the Harris Professor emerita. She joined Stanford as a faculty member in Electrical Engineering in 1999. Her research interests are in information theory, communication theory, and signal processing, and their application to wireless communications, interconnected systems, and neuroscience. She co-founded and served as Chief Technical Officer and Board member of Plume WiFi and of Quantenna (QTNA), and she currently serves on the Board of Directors for Medtronic (MDT) and Crown Castle Inc. (CCI). She has also been a member or chair of the technical advisory boards for Quantenna (QTNA), Sequans (SQNS), Interdigital (IDCC) and Cohere. Goldsmith has launched and led several multi-university research projects including DARPA’s ITMANET program, and she is currently a Principal Investigator in the NSF Center on the Science of Information. Prior to Stanford she held positions at Caltech, Maxim Technologies, Memorylink Corporation, and AT&T Bell Laboratories. Dr. Goldsmith is a member of the National Academy of Engineering and the American Academy of Arts and Sciences, a Fellow of the IEEE and of Stanford, and has received several awards for her work, including the Marconi Prize, the IEEE Eric E. Sumner Technical Field Award in Communications Technology, the IEEE Kirchmayer Graduate Teaching Award, the ComSoc Edwin H. Armstrong Achievement Award as well as Technical Achievement Awards in Communications Theory and in Wireless Communications, the National Academy of Engineering Gilbreth Lecture Award, and the Silicon Valley/San Jose Business Journal’s Women of Influence Award. She is author of the book ``Wireless Communications'' and co-author of the books ``MIMO Wireless Communications'' and “Principles of Cognitive Radio,” all published by Cambridge University Press, as well as an inventor on 29 patents. She has served in various leadership roles in the IEEE and in industrial groups aimed at diversifying STEM fields, and is currently the founding chair of the IEEE Committee on Diversity, Inclusion, and Professional Ethics. At Stanford she has served as chair and a member of the Faculty Senate and on the Planning and Policy Board, Committee on Research, Commissions on Graduate Education and on Undergraduate Education, Task Force on Women and Leadership, and the Faculty Women's Forum Steering Committee. She currently serves on Stanford's Budget Group, Advisory Board, and in the Faculty Senate.

  • Kenneth Goodson

    Kenneth Goodson

    Davies Family Provostial Professor, Senior Associate Dean for Faculty and Academic Affairs and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.

  • Catherine Gorle

    Catherine Gorle

    Assistant Professor of Civil and Environmental Engineering

    Current Research and Scholarly InterestsGorle's research focuses on the development of predictive flow simulations to support the design of sustainable buildings and cities. Specific topics of interest are the coupling of large- and small-scale models and experiments to quantify uncertainties related to the variability of boundary conditions, the development of uncertainty quantification methods for low-fidelity models using high-fidelity data, and the use of field measurements to validate and improve computational predictions.

  • Leonidas Guibas

    Leonidas Guibas

    Paul Pigott Professor in the School of Engineering and Professor, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsGeometric and topological data analysis and machine learning. Algorithms for the joint analysis of collections of images, 3D models, or trajectories. 3D reconstruction.

  • Pat Hanrahan

    Pat Hanrahan

    Canon USA Professor in the School of Engineering and Professor of Electrical Engineering

    BioProfessor Hanrahan's current research involves rendering algorithms, high performance graphics architectures, and systems support for graphical interaction. He also has worked on raster graphics systems, computer animation and modeling and scientific visualization, in particular, volume rendering.

  • Kari Hanson

    Kari Hanson


    BioKari is a former technology executive with a passion for entrepreneurship, innovation, business strategy and making the world a better place. Having worked as a coach, investor, advisor, board member and CFO, she enjoys empowering students and entrepreneurs to thrive in life, the classroom and the marketplace.

    Kari is currently designing and co-teaching the ICME Analytics Accelerator, a project based research course for graduate students from multiple disciplines.