School of Engineering


Showing 11-20 of 143 Results

  • Jan Becker

    Jan Becker

    Lecturer

    BioJan Becker is President, CEO, and Co-Founder of Apex.AI, Inc. He is also the Managing Director of the Apex.AI GmbH and Co-Founder and Director of the Autoware Foundation. Prior to founding Apex.AI, he was Senior Director at Faraday Future responsible for Autonomous Driving and Director at Robert Bosch LLC responsible for Automated Driving in the North America. He also served as a Senior Manager and Principal Engineer at the Bosch Research and Technology Center in Palo Alto, CA, USA, and as a senior research engineer for Corporate Research at Robert Bosch GmbH, Germany. Since 2010, Jan is Lecturer at Stanford University for autonomous vehicles and driver assistance. Previously, he was a visiting scholar at the University’s Artificial Intelligence Lab and a member of the Stanford Racing Team for the 2007 DARPA Urban Challenge. In 2019, Jan was appointed to serve on the external Advisory Board of MARELLI to provide strategic advice to the MARELLI Board.

    He is an inventor who is listed on more than 50 patents and patent applications, author of more than 50 publications and papers covering autonomous systems, robotics, driver assistance, automated driving, and frequent speaker at major conferences. Jan was listed as one of the top ‘60 people driving the self-driving movement’ by Automotive News in 2016. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and belongs to the organization’s Control Systems Society, Intelligent Transportation Systems Society, and Robotics and Automation Society. He is Associate Editor of the IEEE Intelligent Vehicles Symposium and the Intelligent Transportation Systems Conference, and was on the Board of Governors of IEEE’s Intelligent Transportation Systems Society from 2014-2016 and served on the board of directors of Silicon Valley Robotics from 2012-2014. Jan is also a member of SAE and co-author of the standard SAE J3016, which defines the levels of driving automation. Jan earned a Ph.D. in control engineering from the Technical University of Braunschweig, Germany, a master’s degree in mechanical and aerospace engineering from the State University of New York at Buffalo, USA and a master’s degree in electrical engineering from the Technical University of Darmstadt, Germany.

  • Tom Bowman

    Tom Bowman

    Professor of Mechanical Engineering

    BioProfessor Bowman studies reacting flows, primarily through experimental means, and the processes by which pollutants are formed and destroyed in flames. In addition, he is interested in the environmental impact of energy use, specifically greenhouse gas emissions from use of fossil fuels.

  • Reilly Patrick Brennan

    Reilly Patrick Brennan

    Lecturer

    BioReilly P. Brennan is a founding partner at Trucks, a seed-stage venture capital fund for entrepreneurs changing the future of transportation. Trucks investments focus on autonomous, connected and shared vehicle technologies.

    Reilly holds a teaching appointment at Stanford University, where he teaches twice per year in the School of Engineering and the d.school. His classes bridge the fields of transportation, design and entrepreneurship. He is a dedicated educator and advisor to young researchers and entrepreneurs, actively participating in mentorship roles at Techstars Mobility and the University of Michigan.

    His influential newsletter FoT is a radar for what’s happening in transportation.

    Prior to Trucks, Reilly was Executive Director for Stanford’s automotive research program, Revs. Prior to Stanford he developed his love for transportation in media and technology at editorial publications ranging from Automobile to AOL to Monocle and seat time in over 1000 test cars. He was a member of the Le Mans-winning factory Corvette C5-R program. His personal land speed record is 168 mph, behind the wheel of a Chaparral 2E.

  • Wei Cai

    Wei Cai

    Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioPredicting mechanical strength of materials through theory and simulations of defect microstructures across atomic, mesoscopic and continuum scales. Developing new atomistic simulation methods for long time-scale processes, such as crystal growth and self-assembly. Applying machine learning techniques to materials research. Modeling and experiments on the metallurgical processes in metal 3D printing. Understanding microstructure-property relationship in materials for stretchable electronics, such as carbon nanotube networks and semiconducting elastomers.

  • Brian Cantwell

    Brian Cantwell

    Edward C. Wells Professor in the School of Engineering and Professor of Mechanical Engineering

    BioProfessor Cantwell's research interests are in the area of turbulent flow. Recent work has centered in three areas: the direct numerical simulation of turbulent shear flows, theoretical studies of the fine-scale structure of turbulence, and experimental measurements of turbulent structure in flames. Experimental studies include the development of particle-tracking methods for measuring velocity fields in unsteady flames and variable density jets. Research in turbulence simulation includes the development of spectral methods for simulating vortex rings, the development of topological methods for interpreting complex fields of data, and simulations of high Reynolds number compressible and incompressible wakes. Theoretical studies include predictions of the asymptotic behavior of drifting vortex pairs and vortex rings and use of group theoretical methods to study the nonlinear dynamics of turbulent fine-scale motions. Current projects include studies of fast-burning fuels for hybrid propulsion and decomposition of nitrous oxide for space propulsion.

  • Mark A. Cappelli

    Mark A. Cappelli

    Professor of Mechanical Engineering

    BioProfessor Cappelli received his B.Sc. degree in Physics (McGill, 1980), and M.A.Sc and Ph.D. degrees in Aerospace Sciences (Toronto, 1983, 1987). He joined Stanford University in 1987 and is currently a Professor in the Department of Mechanical Engineering and Co-Director of the Engineering Physics Program. He carries out research in applied plasma physics with applications to a broad range of fields, including space propulsion, aerodynamics, medicine, materials synthesis, and fusion.

  • J. Edward Carryer

    J. Edward Carryer

    Adjunct Professor

    BioEd Carryer graduated from the Illinois Institute of Technology in 1975 with a BSE as a member of the first graduating class of the Education and Experience in Engineering Program. This innovative project-based learning program taught him that he could learn almost anything that he needed to know and set him on a path of lifelong learning. That didn’t, however, keep him from going back to school.

    Upon completion of his Master’s Degree in Bio-Medical Engineering at the University of Wisconsin Madison in 1978, he was seduced by his love of cars, and instead of going into medical device design, he went to work for Ford on the 1979 Turbocharged Mustang. In later programs at Ford, he got to apply the background that he had gained in electronics and microcontrollers during his graduate work to the 1983 Turbocharged Mustang and Thunderbird and the 1984 SVO Mustang. After leaving Ford, Ed worked on the design and implementation of engine control software for GM and on a stillborn development program to put a turbocharged engine into the Renault Alliance at AMC before deciding to return once again to school. At Stanford University, he did research in the engine lab and earned his PhD in 1992.

    While working on his PhD, Ed got involved in teaching the graduate course sequence in mechatronics that is known at Stanford as Smart Product Design. He took over teaching the courses first part time in 1989, then full time after completing his PhD. In teaching mechatronics, Ed seems to have found his calling. The integration of mechanical, electronic, and software design with teaching others how to use all of this to make new products hits all his buttons. He is currently a Consulting Professor and the Director of the Smart Product Design Lab (SPDL). He teaches graduate courses in mechatronics in the Mechanical Engineering department and an undergraduate course in mechatronics in the Electrical Engineering department.

    Since 1984, Ed has maintained a consultancy focused on helping firms apply electronics and software in the creation of integrated electromechanical solutions (in 1984, almost no one was using the term mechatronics).The projects that he has worked on include an engine controller for an outboard motor manufacturer, an automated blood gas analyzer, a turbocharger boost control system for a new type of turbocharger, and a heated glove for arctic explorers. His most recent project involved using ZigBee radios and local structural model evaluation to create a wireless network of intelligent sensors to monitor and evaluate the structural health of buildings and transportation infrastructure.