School of Engineering
Showing 51-100 of 705 Results
-
Matthew Bonanni
Ph.D. Student in Mechanical Engineering, admitted Autumn 2019
Current Research and Scholarly InterestsComputational modeling of wildland fires
Computational fluid dynamics
Combustion
Machine learning
Scientific computing -
Anna Boslough
Lecturer
BioI am a lecturer at the PRL (Product Realization Lab), teaching ME 128 / 318 Computer-Aided Product Realization. I also help manage lab operations for our 1000+ users. I have a second appointment in CEE, where I teach Architectural Design and Fabrication (CEE131G).
-
Tom Bowman
Professor of Mechanical Engineering, Emeritus
BioProfessor Bowman studies reacting flows, primarily through experimental means, and the processes by which pollutants are formed and destroyed in flames. In addition, he is interested in the environmental impact of energy use, specifically greenhouse gas emissions from use of fossil fuels.
-
Aaron Brown
Ph.D. Student in Mechanical Engineering, admitted Autumn 2019
Current Research and Scholarly InterestsEngineering research with applications to energy/environmental sustainability.
-
Elizabeth Buechler
Ph.D. Student in Mechanical Engineering, admitted Spring 2018
BioElizabeth (Lily) Buechler is a PhD candidate in mechanical engineering. She received her MS in mechanical engineering from Stanford in 2019 and her BS in mechanical engineering from Tufts University in 2017. She is broadly interested in the intersection of controls, optimization, and machine learning for energy and power systems. Her current research focuses on demand-side flexibility, residential electrification, and DER integration.
-
Kristin Burns
Design Group Manager, Mechanical Engineering - Design
Current Role at StanfordME Design Group Manager
Manager, Industry Affiliate Program for Teaching Design Thinking -
Wei Cai
Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering
BioPredicting mechanical strength of materials through theory and simulations of defect microstructures across atomic, mesoscopic and continuum scales. Developing new atomistic simulation methods for long time-scale processes, such as crystal growth and self-assembly. Applying machine learning techniques to materials research. Modeling and experiments on the metallurgical processes in metal 3D printing. Understanding microstructure-property relationship in materials for stretchable electronics, such as carbon nanotube networks and semiconducting elastomers.
-
Mark A. Cappelli
Professor of Mechanical Engineering
BioProfessor Cappelli received his B.Sc. degree in Physics (McGill, 1980), and M.A.Sc and Ph.D. degrees in Aerospace Sciences (Toronto, 1983, 1987). He joined Stanford University in 1987 and is currently a Professor in the Department of Mechanical Engineering and Co-Director of the Engineering Physics Program. He carries out research in applied plasma physics with applications to a broad range of fields, including space propulsion, aerodynamics, medicine, materials synthesis, and fusion.
-
J. Edward Carryer
Adjunct Professor
BioEd Carryer graduated from the Illinois Institute of Technology in 1975 with a BSE as a member of the first graduating class of the Education and Experience in Engineering Program. This innovative project-based learning program taught him that he could learn almost anything that he needed to know and set him on a path of lifelong learning. That didn’t, however, keep him from going back to school.
Upon completion of his Master’s Degree in Bio-Medical Engineering at the University of Wisconsin Madison in 1978, he was seduced by his love of cars, and instead of going into medical device design, he went to work for Ford on the 1979 Turbocharged Mustang. In later programs at Ford, he got to apply the background that he had gained in electronics and microcontrollers during his graduate work to the 1983 Turbocharged Mustang and Thunderbird and the 1984 SVO Mustang. After leaving Ford, Ed worked on the design and implementation of engine control software for GM and on a stillborn development program to put a turbocharged engine into the Renault Alliance at AMC before deciding to return once again to school. At Stanford University, he did research in the engine lab and earned his PhD in 1992.
While working on his PhD, Ed got involved in teaching the graduate course sequence in mechatronics that is known at Stanford as Smart Product Design. He took over teaching the courses first part time in 1989, then full time after completing his PhD. In teaching mechatronics, Ed seems to have found his calling. The integration of mechanical, electronic, and software design with teaching others how to use all of this to make new products hits all his buttons. He is currently a Consulting Professor and the Director of the Smart Product Design Lab (SPDL). He teaches graduate courses in mechatronics in the Mechanical Engineering department and an undergraduate course in mechatronics in the Electrical Engineering department.
Since 1984, Ed has maintained a consultancy focused on helping firms apply electronics and software in the creation of integrated electromechanical solutions (in 1984, almost no one was using the term mechatronics).The projects that he has worked on include an engine controller for an outboard motor manufacturer, an automated blood gas analyzer, a turbocharger boost control system for a new type of turbocharger, and a heated glove for arctic explorers. His most recent project involved using ZigBee radios and local structural model evaluation to create a wireless network of intelligent sensors to monitor and evaluate the structural health of buildings and transportation infrastructure. -
Dennis R Carter
Professor of Mechanical Engineering, Emeritus
Current Research and Scholarly InterestsProfessor Carter studies the influence of mechanical loading upon the growth, development, regeneration, and aging of skeletal tissues. Basic information from such studies is used to understand skeletal diseases and treatments. He has served as President of the Orthopaedic Research Society and is a Fellow of the American Institute for Medical and Biological Engineering.
-
Ovijit Chaudhuri
Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsWe study the physics of cell migration, division, and morphogenesis in 3D, as well cell-matrix mechanotransduction, or the process by which cells sense and respond to mechanical properties of the extracellular matrices. For both these areas, we use engineered biomaterials for 3D culture as artificial extracellular matrices.
-
Helen L. Chen
Research Scientist
BioHelen L. Chen is a research scientist in the Designing Education Lab in the Department of Mechanical Engineering at Stanford University. She holds an undergraduate degree in communication from UCLA and a PhD in communication with a minor in psychology from Stanford. Helen is a board member for the Association for Authentic, Experiential and Evidence-Based Learning (AAEEBL) and is a co-author of Documenting Learning with ePortfolios: A Guide for College Instructors and co-executive editor of the International Journal of ePortfolio. She works closely with the Association of American Colleges and Universities and consults with institutions on general education redesign, authentic assessment approaches, design thinking, and personal branding and ePortfolios. Helen's current research and scholarship focus on engineering and entrepreneurship education; the pedagogy of portfolios and reflective practice in higher education; and redesigning how learning is recorded and recognized in traditional transcripts and academic credentials.