School of Engineering
Showing 191-200 of 310 Results
-
Luis Mejia
Affiliate, Materials Science and Engineering
BioLuis has been a technology transfer professional at Stanford for over 30 years. He is a volunteer for Climate Donor, Inc. a non-profit that helps fund climate change and species extinction mitigation projects. Prior to joining Stanford he worked on solar energy systems and energy management at Honeywell and Pacific Gas & Electric. He has a degree in Energy Systems Engineering from Arizona State University, is a Fellow of the Disruptor Foundation and is a recipient of an award for Excellence in Technology Transfer from the Department of Energy, Federal Laboratory Consortium.
-
Celeste Melamed
Postdoctoral Scholar, Materials Science and Engineering
BioCeleste Melamed is a postdoctoral scholar with the Chueh group at Stanford. Her interests include ionics, structural chemistry and transport, and materials by design, with the overarching goal of a sustainable energy economy. She is currently developing thin film synthetic methods to investigate interfacial structure and evolution in solid-state battery materials. She received her PhD in Materials Science at Colorado School of Mines and the National Renewable Energy Laboratory in 2021, where she investigated the interplay between local and long-range structure in new ternary nitrides for optoelectronic applications. She received a B.S. in Physics from Harvey Mudd College in 2015.
-
L. Julian Mele
Postdoctoral Scholar, Materials Science and Engineering
BioJulian graduated in electrical engineering and received his PhD from the University of Udine (Italy). During his PhD, he worked on electrochemical modeling of performance and noise for electronic biosensors and bioactuators. Then he continued as a postdoctoral scholar in Prof. Palestri’s group, where he focused on modeling and simulations of conjugated polymers for bioelectronic applications. He joined Prof. Salleo's group in the fall of 2022 where he is contributing to the understanding of the physical operation of organic devices.
-
Nicholas Melosh
Professor of Materials Science and Engineering
On Leave from 04/01/2025 To 06/30/2025BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.
Research Interests:
Bio-inorganic Interface
Molecular materials at interfaces
Self-Assembly and Nucleation and Growth -
Jarod Meyer
Ph.D. Student in Materials Science and Engineering, admitted Autumn 2020
BioJarod is a PhD Candidate in Materials Science and Engineering advised by Professor Kunal Mukherjee. At Stanford, his research focuses on investigating the Molecular beam epitaxial growth and optoelectronic properties of IV-VI semiconductor alloys for mid-infrared light emitting diode applications. Prior to Stanford, he received his undergraduate degree in Materials Science and Engineering at the University of Illinois at Urbana-Champaign, where he worked in Professor Can Bayram’s lab on light emission in III-Nitride semiconductor materials
-
Jordan Moore
Postdoctoral Scholar, Materials Science and Engineering
BioJordan Moore is currently a postdoctoral fellow at Stanford University, appointed in both the Departments of Materials Science & Engineering and Neurology. He earned his Ph.D. from The Ohio State University within the Department of Biomedical Engineering, where he was mentored by Dr. Daniel Gallego Perez. During his doctoral studies, Jordan's research primarily centered around the application of electroporation for gene delivery in vivo, with a specific focus on cell-reprogramming.
His work in his Ph.D. program aimed to address the restoration of blood flow to damaged peripheral nerves, contributing to the promotion of nerve regeneration and functional recovery. As a postdoctoral researcher, Jordan is currently co-mentored by Professor Sarah Heilshorn and Dr. Marion Buckwalter. In this role, he is dedicated to the development of innovative biomaterial-based platforms for gene and drug delivery. His research focuses on the treatment of stroke-related injuries and the prevention of cognitive decline.