School of Engineering


Showing 21-30 of 151 Results

  • John M. Cioffi

    John M. Cioffi

    Hitachi America Professor in the School of Engineering, Emeritus

    BioJohn M. Cioffi teaches Stanford's graduate electrical engineering course sequence in digital communications, part-time as recalled emeritus presently, from 1986 to the present. Cioffi's research interests are in the theory of transmitting the highest possible data rates on a number of different communications channels, many of which efforts spun out of Stanford through he and/or his many former PhD students to companies, most notably including the basic designed globally used 500 million DSL connections. Cioffi also oversaw the prototype developments for the worlds first cable modem and digital-audio broadcast systems. Cioffi pioneering the use of remote management algorithms to improve (over the internet or cloud) both wireline (DSL) and wireless (Wi-Fi) physical-layer transmission performance, an area often known as Dynamic Spectrum Management or Dynamic Line Management. Cioffi is co-inventor on basic patents for vectored DSL transmission and optimized MIMO wireless transmission. In his early career, Cioffi developed the worlds first full-duplex voiceband data modem while at Bell Laboratories, and the worlds first adaptively equalized disk read channel while at IBM. His courses and research projects over the years center on the area of multiuser transmission methods.

  • Daniel Norbert Congreve

    Daniel Norbert Congreve

    Assistant Professor of Electrical Engineering

    BioDan is an Assistant Professor in the Department of Electrical Engineering at Stanford University. Prior to Stanford, Dan received his B.S. and M.S. from Iowa State in 2011, working with Vik Dalal studying defect densities of nano-crystalline and amorphous silicon. He then received his PhD from MIT in Electrical Engineering in 2015, studying under Marc Baldo. His thesis work focused on photonic energy conversion using singlet fission and triplet fusion as downconverting and upconverting processes, respectively. He spent a year as a postdoc with Will Tisdale in Chemical Engineering at MIT studying perovskite nanoplatelets. He joined the Rowland Institute in 2016 as a Rowland Fellow before starting at Stanford in 2020. Dan is a Moore Inventor Fellow, Sloan Research Fellow, Intel Rising Star, and co-founder of Quadratic3D, a startup looking to commercialize 3D printing technologies. His current research interests focus on engineering nanomaterials to solve challenging problems.

  • Eric Darve

    Eric Darve

    Director, Institute for Computational and Mathematical Engineering (ICME) and Professor of Mechanical Engineering

    Current Research and Scholarly InterestsThe research interests of Professor Darve span across several domains, including machine learning for science and engineering, large-language models, transformer models, surrogate and reduced order modeling, stochastic inversing, anomaly detection, numerical linear algebra, high-performance, parallel, and GPU computing.

  • Reinhold Dauskardt

    Reinhold Dauskardt

    Ruth G. and William K. Bowes Professor in the School of Engineering

    BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.

  • David Donoho

    David Donoho

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences

    BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.

    Research Statement:
    My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems.

  • Ron Dror

    Ron Dror

    Cheriton Family Professor and Professor, by courtesy, of Structural Biology and of Molecular & Cellular Physiology

    Current Research and Scholarly InterestsMy lab’s research focuses on computational biology, with an emphasis on 3D molecular structure. We combine two approaches: (1) Bottom-up: given the basic physics governing atomic interactions, use simulations to predict molecular behavior; (2) Top-down: given experimental data, use machine learning to predict molecular structures and properties. We collaborate closely with experimentalists and apply our methods to the discovery of safer, more effective drugs.

  • Eric Dunham

    Eric Dunham

    Professor of Geophysics

    Current Research and Scholarly InterestsPhysics of natural hazards, specifically earthquakes, tsunamis, and volcanoes. Computational geophysics.

  • Jonathan Fan

    Jonathan Fan

    Associate Professor of Electrical Engineering

    Current Research and Scholarly InterestsOptical engineering plays a major role in imaging, communications, energy harvesting, and quantum technologies. We are exploring the next frontier of optical engineering on three fronts. The first is new materials development in the growth of crystalline plasmonic materials and assembly of nanomaterials. The second is novel methods for nanofabrication. The third is new inverse design concepts based on optimization and machine learning.