School of Engineering
Showing 401-500 of 588 Results
-
Mr Ryan K Pierce
Adjunct Lecturer, Bioengineering
BioRyan Pierce is a Lecturer in Bioengineering, and Co-Founder and CEO of Nine, a neonatal/maternal health technology company. He has served as VP of Design and Innovation at Ventus Medical, VP of Business Development at Loma Vista Medical, a healthcare investor at De Novo Ventures, and a product designer at Concentric Medical and The Foundry/Zephyr Medical. He is currently an Entrepreneur-in-Residence at Rock Health, a digital health seed fund. An inventor on 30 U.S. patents, he holds mechanical engineering degrees from MIT and Stanford, and an MBA from Harvard Business School.
-
Grigore Pintilie
Research Scientist
BioYork University, B.Sc. 1995-1999, Computer Science - Computer Graphics, HCI
University of Toronto, M.Sc. 1999-2001, Computer Science, Computer Graphics
Blueprint Initiative, 2001-2005 - Bioinformatics Research
MIT, Ph.D. 2005-2011 - Electrical Engineering and Computer Science, Biology - CryoEM map segmentation and fitting of atomic models
Baylor College of Medicine 2011-2017 - Scientific Programmer - Cryo-EM map analysis and atomic modeling
Stanford University 2017-present - Research Scientist - Cryo-EM map analysis and atomic modeling -
Manu Prakash
Associate Professor of Bioengineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Oceans and of Biology
BioWe use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions such as how do cells sense pressure or gravity? Finally, we are dedicated towards inventing and distributing “frugal science” tools to democratize access to science (previous inventions used worldwide: Foldscope, Abuzz), diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito surveillance or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.
-
Patrick Lee Purdon
Professor of Anesthesiology, Perioperative and Pain Medicine (Department Research) and, by courtesy, of Bioengineering
BioMy research integrates neuroimaging, biomedical signal processing, and the systems neuroscience of general anesthesia and sedation.
My group conducts human studies of anesthesia-induced unconsciousness, using a variety of techniques including multimodal neuroimaging, high-density EEG, and invasive neurophysiological recordings used to diagnose medically refractory epilepsy. We also develop novel methods in neuroimaging and biomedical signal processing to support these studies, as well as methods for monitoring level of consciousness under general anesthesia using EEG. -
Lei (Stanley) Qi
Associate Professor of Bioengineering
BioDr. Lei (Stanley) Qi is an Associate Professor of Bioengineering, an Institute Scholar at Sarafan ChEM-H, and a Chan Zuckerberg Biohub Investigator. He earned B.S. in Physics and Mathematics from Tsinghua University and Ph.D. in Bioengineering from UC Berkeley. Before joining the Stanford faculty in 2014, Dr. Qi was a Systems Biology Faculty Fellow at UCSF.
Dr. Qi is a pioneer in CRISPR technology development, particularly in the areas of epigenetic regulation and chromatin DNA imaging. He invented the first nuclease-deactivated Cas9 (dCas9) system for targeted gene regulation in living cells. His lab has since expanded the CRISPR-dCas toolbox, including new tools and variants like hyperCas12a and the compact CasMINI. These new technologies have enabled CRISPRi and CRISPRa for targeted gene repression and activation in various cells and organisms, large-scale genetic perturbation screens, and precision epigenetic editing in primary cells. His lab also developed technologies for dynamic chromatin DNA imaging in live cells (LiveFISH), 3D genome structure manipulation (CRISPR-GO), and multiplexed transcriptome engineering (MEGA).
Dr. Qi has used these new technologies to make key discoveries in epigenetics, such as the synergistic functions of enhancer elements in cancer gene regulation, metabolic pathways in T cell dysfunction, and novel antivirals against RNA viruses. Dr. Qi’s current research explores synthetic biology, epigenetics, immune cell engineering, and innovative targets for gene therapy in immunology and neurobiology. -
Stephen Quake
Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics
Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.
-
Luca Rosalia
Postdoctoral Scholar, Bioengineering
BioLuca Rosalia received his bachelor’s and master’s degrees in Biomedical Engineering from the University of Glasgow (UK). During his studies, he visited the National University of Singapore and the University of Cambridge, where he gained his first exposure to the fields of soft robotics and tissue biomechanics. He pursued doctoral studies in the Health Sciences and Technology (HST) Ph.D. program of Harvard University and Massachusetts Institute of Technology in the lab of Ellen Roche and he's currently at Stanford University as a Postdoctoral Scholar in Bioengineering in the Skylar-Scott lab.
His doctoral work primarily focused on high-fidelity and patient-specific soft robotic preclinical models of valvular heart disease, congenital defects, and heart failure with preserved ejection fraction. Luca leveraged these platforms for the testing and development of medical devices through several partnerships with industry. During his studies, he also worked as an R&D engineer in the Structural Heart division of Abbott Laboratories on the development of transcatheter aortic valve replacements (TAVR). He also gained clinical experience at the Veterans Affairs Medical Center in Boston and at Boston Children's Hospital. In the Skylar-Scott lab, Luca will be working on whole-heart bioprinting. -
Paul Schmiedmayer
Postdoctoral Scholar, Bioengineering
Current Research and Scholarly InterestsDr. Schmiedmayer's research investigates scalable, intelligent, data-driven systems that leverage patient data and connected devices to provide real-time, personalized healthcare. He aims to validate these solutions by deploying AI-based models on resource-constrained, patient-facing devices, such as smartphones and smart devices, ensuring that personalized medicine is both cost-effective and privacy-preserving.
-
Luise Avelina Seeker
Basic Life Research Scientist
BioLuise Seeker is a trained vet from Berlin, Germany with a strong interest in researching ageing at a cellular level. She obtained a PhD in Genomics from the University of Edinburgh in 2018 for studying telomeres, their heritability and their power to predict lifespan (supervised by Profs. Georgios Banos, Dan Nussey, Mike Coffey and Bruce Whitelaw). She joined Prof. Anna Williams' lab at the University of Edinburgh as a postdoc and investigated transcriptional changes with ageing in the human central nervous system.
-
Merlinda-Loriane Sewavi
Life Science Research Professional 2, Program-Skylar-Scott, M.
BioMerlinda-Loriane is a translational Bioprocess Engineer at Stanford University specializing in protocol architecture for stem cell regenerative systems. At Stanford, she is a member of the BASE Initiative, the Cardiovascular Institute, and holds joint appointments with the School of Engineering and School of Medicine in Bioengineering. Her work focuses on engineering scalable, sequencing-grade pipelines for 3D iPSC-derived cardiomyocyte models, including atrial and ventricular subtypes. She also specializes in developing full-stack molecular and bioprocess workflows that convert 2D cells into robust 3D systems, and her technical fluency spans RNA sequencing, qPCR, spatial transciptomics, and multi-omic integration for translational pipeline development.
She is an early foundational technical validator for a next-generation AI platform designed to optimize experimental workflows in microbiology, human biology, chemical biology, bioprocessing, and diagnostics. Her contributions shape how AI can support bench scientists with iterative protocol refinement in real-time lab contexts. She is also a National GEM Consortium Fellow and a Rackham Merit Fellow. -
Hyongsok Tom Soh
W. M. Keck Foundation Professor of Electrical Engineering, Professor of Radiology (Diagnostic Sciences Laboratory) of Bioengineering and, by courtesy, of Chemical Engineering
BioDr. Soh received his B.S. with a double major in Mechanical Engineering and Materials Science with Distinction from Cornell University and his Ph.D. in Electrical Engineering from Stanford University. From 1999 to 2003, Dr. Soh served as the technical manager of MEMS Device Research Group at Bell Laboratories and Agere Systems. He was a faculty member at UCSB before joining Stanford in 2015. His current research interests are in analytical biotechnology, especially in high-throughput screening, directed evolution, and integrated biosensors.
-
James Swartz
James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering
Current Research and Scholarly InterestsProgram Overview
The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances.