School of Humanities and Sciences


Showing 1-4 of 4 Results

  • Sean Hartnoll

    Sean Hartnoll

    Associate Professor of Physics

    BioI am a theorist working on problems in condensed matter, high energy and gravitational physics.

    The anomalous transport behavior of quantum many-body systems --- including unconventional materials such as high temperature superconductors and other 'strange metals', artificial ultracold atomic systems and the strongly coupled quark gluon plasma --- is a longstanding theoretical challenge that I have approached from several angles. I have suggested that transport in these systems may be controlled by fundamental limitations imposed by quantum statistical mechanics. To this end, I have established bounds on quantum transport that connect the macroscopic properties of these systems to quantities such as the local thermalization rate and underlying quantum mechanical `Lieb-Robinson' velocities. In parallel to this ''bird's eye'' approach, I am also increasingly interested in specific scattering mechanisms in unconventional materials that may give a relatively simple explanation of transport behavior that has otherwise been considered anomalous --- using this approach my collaborators and I have 'demystified' aspects of transport in quantum critical ruthenate materials.

    I am also working on understanding aspects of the emergence of spacetime from large N matrix quantum mechanics models. These can be thought of as the simplest models of holographic duality, and will likely hold the key to understanding the emergence of local physics as well as black holes.

    Along with many other theorists, I have found in recent years that the holographic correspondence, the physics of quantum entanglement and quantum field theory more generally have led to strong and unanticipated connections between central concerns in condensed matter and high energy physics.

    Lists of my publications and of recorded talks and lectures can be found following the links on the right.

  • Patrick Hayden

    Patrick Hayden

    Stanford Professor of Quantum Physics and Professor, by courtesy, of Computer Science

    BioProfessor Hayden is a leader in the exciting new field of quantum information science. He has contributed greatly to our understanding of the absolute limits that quantum mechanics places on information processing, and how to exploit quantum effects for computing and other aspects of communication. He has also made some key insights on the relationship between black holes and information theory.

  • Leo Hollberg

    Leo Hollberg

    Professor (Research) of Physics

    BioHow can we make optimal use of quantum systems (atoms, lasers, and electronics) to test fundamental physics principles, enable precision measurements of space-time and when feasible, develop useful devices, sensors, and instruments?

    Professor Hollberg’s research objectives include high precision tests of fundamental physics as well as applications of laser physics and technology. This experimental program in laser/atomic physics focuses on high-resolution spectroscopy of laser-cooled and -trapped atoms, non-linear optical coherence effects in atoms, optical frequency combs, optical/microwave atomic clocks, and high sensitivity trace gas detection. Frequently this involves the study of laser noise and methods to circumvent measurement limitations, up to, and beyond, quantum limited optical detection. Technologies and tools utilized include frequency-stabilized lasers and chip-scale atomic devices. Based in the Hansen Experimental Physics Laboratory (HEPL), this research program has strong, synergistic, collaborative connections to the Stanford Center on Position Navigation and Time (SCPNT). Research directions are inspired by experience that deeper understanding of fundamental science is critical and vital in addressing real-world problems, for example in the environment, energy, and navigation. Amazing new technologies and devices enable experiments that test fundamental principles with high precision and sometimes lead to the development of better instruments and sensors. Ultrasensitive optical detection of atoms, monitoring of trace gases, isotopes, and chemicals can impact many fields. Results from well-designed experiments teach us about the “realities” of nature, guide and inform, occasionally produce new discoveries, frequently surprise, and almost always generate new questions and perspectives.