School of Humanities and Sciences


Showing 11-17 of 17 Results

  • Vahe Petrosian

    Vahe Petrosian

    Professor of Physics and of Applied Physics

    BioHow do things evolve in the universe? How are particles accelerated in the universe?

    Professor Petrosian’s research covers many topics in the broad area of theoretical astrophysics and cosmology, with a strong focus on high-energy astrophysical processes.

    Cosmological studies deal with global properties of the universe, where the main focus is the understanding of the evolution of the universe at high redshifts, through studies of the evolutions of population of sources such as galaxies and quasars or active galactic nuclei, gamma-ray bursts, using new statistical techniques developed in collaboration with Prof. B. Efron of the Department of Statistics. Another area of research is the use of gravitational lensing in measuring mass in the universe.

    High-energy astrophysics research involves interpretation of non-thermal astronomical sources where particles are accelerated to very high energies and emit various kinds of radiation. These processes occur on many scales and in all sorts of objects: in the magnetosphere of planets, in the interplanetary space, during solar and stellar flares, in the accretion disks and jets around stellar-size and super-massive black holes, at centers of galaxies, in gamma-ray bursts, in supernovae, and in the intra-cluster medium of clusters of galaxies. Plasma physics processes common in all these sources for acceleration of particles and their radiative signature is the main focus of the research here.

  • Dmitri Petrov

    Dmitri Petrov

    Michelle and Kevin Douglas Professor in the School of Humanities and Sciences

    Current Research and Scholarly InterestsEvolution of genomes and population genomics of adaptation and variation

  • Eric Pop

    Eric Pop

    Pease-Ye Professor, Professor of Electrical Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering and of Applied Physics

    Current Research and Scholarly InterestsThe Pop Lab explores problems at the intersection of nanoelectronics and nanoscale energy conversion. These include fundamental limits of current and heat flow, energy-efficient transistors and memory, and energy harvesting via thermoelectrics. The Pop Lab also works with novel nanomaterials like carbon nanotubes, graphene, BN, MoS2, and their device applications, through an approach that is experimental, computational and highly collaborative.

  • Manu Prakash

    Manu Prakash

    Associate Professor of Bioengineering, Senior Fellow at the Woods Institute for the Environment and Associate Professor, by courtesy, of Oceans and of Biology

    BioWe use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. Broadly, we invent new tools for studying non-model organisms with significant focus on life in the ocean - addressing fundamental questions such as how do cells sense pressure or gravity? Finally, we are dedicated towards inventing and distributing “frugal science” tools to democratize access to science (previous inventions used worldwide: Foldscope, Abuzz), diagnostics of deadly diseases like malaria and convening global citizen science communities to tackle planetary scale environmental challenges such as mosquito surveillance or plankton surveillance by citizen sailors mapping the ocean in the age of Anthropocene.

  • Jonathan Pritchard

    Jonathan Pritchard

    Bing Professor of Population Studies, Professor of Genetics and Biology

    Current Research and Scholarly InterestsWe are interested in a broad range of problems at the interface of genomics and evolutionary biology. One current focus of the lab is in understanding how genetic variation impacts gene regulation and complex traits. We also have long-term interests in using genetic data to learn about population structure, history and adaptation, especially in humans.

    FOR UP-TO-DATE DETAILS ON MY LAB AND RESEARCH, PLEASE SEE: http://pritchardlab.stanford.edu