School of Humanities and Sciences


Showing 1-8 of 8 Results

  • Charles Titus

    Charles Titus

    Ph.D. Student in Physics, admitted Autumn 2014

    BioI am a graduate student in the Department of Physics at Stanford University. As part of the research group of Dr. Kent Irwin, I focus on the application of superconducting detectors to X-ray spectroscopy.

    Working at the Stanford Synchrotron Radiation Lightsource (SSRL), I operate a 240 pixel transition-edge sensor (TES) array in support of a diverse user program at beamline 10-1. TES devices have emerged in the soft X-ray regime as moderate-resolution, high-throughput spectrometers that are particularly suited to measure dilute and damage-sensitive samples. My role as an instrumentation scientist has focused on fast data processing, instrument calibration, and ease-of-use for users.

    My research into spectroscopy focuses on using partial-fluorescence-yield X-ray absorption spectroscopy to probe electronic structure in transition-metal complexes. Transition metals play a critical role in proteins such as hemoglobin and photosystem-II, catalysts, and batteries. In all of these systems, metals have a powerful ability to change oxidation states, store energy, and shuttle electrons around. X-ray spectroscopy allows us to directly probe the properties of transition metals that make them so useful for chemistry and biology.

  • Lauren Tompkins

    Lauren Tompkins

    Assistant Professor of Physics

    Current Research and Scholarly InterestsProfessor Tompkins’s research focuses on understanding the relationships which govern matter’s most fundamental constituents. As a member of the ATLAS experiment at the Large Hadron Collider (LHC), she utilizes the world’s highest energy person-made particle collisions in order to understand the mechanism that gives particles mass, whether or not our current model of elementary particle interactions is a complete description of nature, and if dark matter can be produced and studied in colliders.

    In order to search for the exceedingly rare interactions which may provide insight to these questions, the LHC will produce a blistering rate of 50 to 80 proton-proton collisions every 25 nanoseconds in 2015 and beyond. Professor Tompkins works on the design and implementation of custom electronics which will improve the ATLAS experiment’s ability to pick out the collisions which produce the Higgs bosons, dark matter particles and other rare events out of the deluge of ordinary interactions. Her group focuses on particles called heavy flavor fermions, the most massive particles not responsible for mediating interactions. Because they are so heavy, they may have a special connection to the origin of mass or physics beyond our current models of particle interactions.