School of Humanities and Sciences
Showing 1-10 of 15 Results
-
Daniel Yamins
Associate Professor of Psychology and of Computer Science
Current Research and Scholarly InterestsOur lab's research lies at intersection of neuroscience, artificial intelligence, psychology and large-scale data analysis. It is founded on two mutually reinforcing hypotheses:
H1. By studying how the brain solves computational challenges, we can learn to build better artificial intelligence algorithms.
H2. Through improving artificial intelligence algorithms, we'll discover better models of how the brain works.
We investigate these hypotheses using techniques from computational modeling and artificial intelligence, high-throughput neurophysiology, functional brain imaging, behavioral psychophysics, and large-scale data analysis. -
Yan Yan
Ph.D. Student in Psychology, admitted Autumn 2022
Current Research and Scholarly InterestsI am interested in value computation and representation in the brain, as well as the individual differences in this process in healthy people and people with mood disorders. I am also interested in how reward processing interplays with subjective feeling states such as mood and motivation.
-
Jason Yeatman
Associate Professor of Pediatrics (Developmental-Behavioral Pediatrics), of Education and of Psychology
BioDr. Jason Yeatman is an Associate Professor in the Graduate School of Education and Department of Psychology at Stanford University and the Division of Developmental and Behavioral Pediatrics at Stanford University School of Medicine. Dr. Yeatman completed his PhD in Psychology at Stanford where he studied the neurobiology of literacy and developed new brain imaging methods for studying the relationship between brain plasticity and learning. After finishing his PhD, he took a faculty position at the University of Washington’s Institute for Learning and Brain Sciences before returning to Stanford.
As the director of the Brain Development and Education Lab, the overarching goal of his research is to understand the mechanisms that underlie the process of learning to read, how these mechanisms differ in children with dyslexia, and to design literacy intervention programs that are effective across the wide spectrum of learning differences. His lab employs a collection of structural and functional neuroimaging measurements to study how a child’s experience with reading instruction shapes the development of brain circuits that are specialized for this unique cognitive function.