School of Humanities and Sciences
Showing 1-39 of 39 Results
-
Michael Baiocchi
Associate Professor of Epidemiology and Population Health and, by courtesy, of Statistics and of Medicine (Stanford Prevention Research Center)
BioProfessor Baiocchi is a PhD statistician in Stanford University's Epidemiology and Population Health Department. He thinks a lot about behavioral interventions and how to rigorously evaluate if and how they work. Methodologically, his work focuses on creating statistically rigorous methods for causal inference that are transparent and easy to critique. He designed -- and was the principle investigator for -- two large randomized studies of interventions to prevent sexual assault in the settlements of Nairobi, Kenya.
Professor Baiocchi is an interventional statistician (i.e., grounded in both the creation and evaluation of interventions). The unifying idea in his research is that he brings rigorous, quantitative approaches to bear upon messy, real-world questions to better people's lives. -
Emmanuel Candes
Barnum-Simons Chair of Math and Statistics, and Professor of Statistics and, by courtesy, of Electrical Engineering
BioEmmanuel Candès is the Barnum-Simons Chair in Mathematics and Statistics, a professor of electrical engineering (by courtesy) and a member of the Institute of Computational and Mathematical Engineering at Stanford University. Earlier, Candès was the Ronald and Maxine Linde Professor of Applied and Computational Mathematics at the California Institute of Technology. His research interests are in computational harmonic analysis, statistics, information theory, signal processing and mathematical optimization with applications to the imaging sciences, scientific computing and inverse problems. He received his Ph.D. in statistics from Stanford University in 1998.
Candès has received several awards including the Alan T. Waterman Award from NSF, which is the highest honor bestowed by the National Science Foundation, and which recognizes the achievements of early-career scientists. He has given over 60 plenary lectures at major international conferences, not only in mathematics and statistics but in many other areas as well including biomedical imaging and solid-state physics. He was elected to the National Academy of Sciences and to the American Academy of Arts and Sciences in 2014. -
Persi Diaconis
Mary V. Sunseri Professor in the School of Humanities and Sciences and Professor of Mathematics
Current Research and Scholarly InterestsResearch Interests:
PROBABILITY THEORY
BAYESIAN STATISTICS
STATISTICAL COMPUTING
COMBINATORICS -
David Donoho
Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences
BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.
Research Statement:
My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems. -
John Duchi
Associate Professor of Statistics, of Electrical Engineering and, by courtesy, of Computer Science
Current Research and Scholarly InterestsMy work spans statistical learning, optimization, information theory, and computation, with a few driving goals: 1. To discover statistical learning procedures that optimally trade between real-world resources while maintaining statistical efficiency. 2. To build efficient large-scale optimization methods that move beyond bespoke solutions to methods that robustly work. 3. To develop tools to assess and guarantee the validity of---and confidence we should have in---machine-learned systems.
-
Bradley Efron
Max H. Stein Professor and Professor of Statistics and of Biomedical Data Science, Emeritus
Current Research and Scholarly InterestsResearch Interests:
BOOTSTRAP
BIOSTATISTICS
BAYESIAN STATISTICS -
Barbara Elizabeth Engelhardt
Professor (Research) of Biomedical Data Science and, by courtesy, of Statistics and of Computer Science
BioBarbara E Engelhardt is a Senior Investigator at Gladstone Institutes and Professor at Stanford University in the Department of Biomedical Data Science. She received her B.S. (Symbolic Systems) and M.S. (Computer Science) from Stanford University and her PhD from UC Berkeley (EECS) advised my Prof. Michael I Jordan. She was a postdoctoral fellow with Prof. Matthew Stephens at the University of Chicago. She was an Assistant Professor at Duke University from 2011-2014, and an Assistant, Associate, and then Full Professor at Princeton University in Computer Science from 2014-2022. She has worked at Jet Propulsion Labs, Google Research, 23andMe, and Genomics plc. In her career, she received an NSF GRFP, the Google Anita Borg Scholarship, the SMBE Walter M. Fitch Prize (2004), a Sloan Faculty Fellowship, an NSF CAREER, and the ISCB Overton Prize (2021). Her research is focused on developing and applying models for structured biomedical data that capture patterns in the data, predict results of interventions to the system, assist with decision-making support, and prioritize experiments for design and engineering of biological systems.
-
Emily Fox
Professor of Statistics and of Computer Science
BioEmily Fox is a Professor in the Departments of Statistics and Computer Science at Stanford University. Prior to Stanford, she was the Amazon Professor of Machine Learning in the Paul G. Allen School of Computer Science & Engineering and Department of Statistics at the University of Washington. From 2018-2021, Emily led the Health AI team at Apple, where she was a Distinguished Engineer. Before joining UW, Emily was an Assistant Professor at the Wharton School Department of Statistics at the University of Pennsylvania. She earned her doctorate from Electrical Engineering and Computer Science (EECS) at MIT where her thesis was recognized with EECS' Jin-Au Kong Outstanding Doctoral Thesis Prize and the Leonard J. Savage Award for Best Thesis in Applied Methodology.
Emily has been awarded a CZ Biohub Investigator Award, Presidential Early Career Award for Scientists and Engineers (PECASE), a Sloan Research Fellowship, ONR Young Investigator Award, and NSF CAREER Award. Her research interests are in modeling complex time series arising in health, particularly from health wearables and neuroimaging modalities. -
Trevor Hastie
John A. Overdeck Professor, Professor of Statistics and of Biomedical Data Sciences
Current Research and Scholarly InterestsFlexible statistical modeling for prediction and representation of data arising in biology, medicine, science or industry. Statistical and machine learning tools have gained importance over the years. Part of Hastie's work has been to bridge the gap between traditional statistical methodology and the achievements made in machine learning.
-
Susan Holmes
Professor of Statistics
Current Research and Scholarly InterestsOur lab has been developing tools for the analyses of complex data structures, extending work on multivariate data to structured multitable table that include graphs, networks and trees as well as categorical and continuous measurements.
We created and support the Bioconductor package phyloseq for the analyses of microbial ecology data from the microbiome. We have specialized in developing interactive graphical visualization tools for doing reproducible research in biology. -
Iain Johnstone
Marjorie Mhoon Fair Professor of Quantitative Science and Professor of Statistics and of Biomedical Data Sciences
Current Research and Scholarly InterestsEmpirical bias/shrinkage estimation; non-parametric, smoothing; statistical inverse problems.
-
Percy Liang
Associate Professor of Computer Science, Senior Fellow at the Stanford Institute for HAI, and Associate Professor, by courtesy, of Statistics
BioPercy Liang is an Associate Professor of Computer Science at Stanford University (B.S. from MIT, 2004; Ph.D. from UC Berkeley, 2011) and the director of the Center for Research on Foundation Models (CRFM). He is currently focused on making foundation models (in particular, language models) more accessible through open-source and understandable through rigorous benchmarking. In the past, he has worked on many topics centered on machine learning and natural language processing, including robustness, interpretability, human interaction, learning theory, grounding, semantics, and reasoning. He is also a strong proponent of reproducibility through the creation of CodaLab Worksheets. His awards include the Presidential Early Career Award for Scientists and Engineers (2019), IJCAI Computers and Thought Award (2016), an NSF CAREER Award (2016), a Sloan Research Fellowship (2015), a Microsoft Research Faculty Fellowship (2014), and paper awards at ACL, EMNLP, ICML, COLT, ISMIR, CHI, UIST, and RSS.
-
Scott W Linderman
Assistant Professor of Statistics and, by courtesy, of Computer Science and of Electrical Engineering
BioScott is an Assistant Professor of Statistics and, by courtesy, Electrical Engineering and Computer Science at Stanford University. He is also an Institute Scholar in the Wu Tsai Neurosciences Institute and a member of Stanford Bio-X and the Stanford AI Lab. His lab works at the intersection of machine learning and computational neuroscience, developing statistical methods to analyze large scale neural data. Previously, Scott was a postdoctoral fellow with Liam Paninski and David Blei at Columbia University, and he completed his PhD in Computer Science at Harvard University with Ryan Adams and Leslie Valiant. He obtained his undergraduate degree in Electrical and Computer Engineering from Cornell University and spent three years as a software engineer at Microsoft before graduate school.
-
Andrea Montanari
John D. and Sigrid Banks Professor and Professor of Mathematics
BioI am interested in developing efficient algorithms to make sense of large amounts of noisy data, extract information from observations, estimate signals from measurements. This effort spans several disciplines including statistics, computer science, information theory, machine learning.
I am also working on applications of these techniques to healthcare data analytics. -
Art Owen
Max H. Stein Professor
Current Research and Scholarly InterestsStatistical methods to analyze large data matrices in bioinformatics
-
Julia Palacios
Associate Professor of Statistics, of Biomedical Data Science and, by courtesy, of Biology
BioDr. Palacios seek to provide statistically rigorous answers to concrete, data driven questions in evolutionary genetics and public health . My research involves probabilistic modeling of evolutionary forces and the development of computationally tractable methods that are applicable to big data problems. Past and current research relies heavily on the theory of stochastic processes, Bayesian nonparametrics and recent developments in machine learning and statistical theory for big data.
-
Joseph Romano
Professor of Statistics and of Economics
Current Research and Scholarly InterestsWork in progress is described under "Projects"
-
Chiara Sabatti
Professor of Biomedical Data Science and of Statistics
Current Research and Scholarly InterestsStatistical models and reasoning are key to our understanding of the genetic basis of human traits. Modern high-throughput technology presents us with new opportunities and challenges. We develop statistical approaches for high dimensional data in the attempt of improving our understanding of the molecular basis of health related traits.
-
Julia Salzman
Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology
Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes
-
Hua Tang
Professor of Genetics and, by courtesy, of Statistics
Current Research and Scholarly InterestsDevelop statistical and computational methods for population genomics analyses; modeling human evolutionary history; genetic association studies in admixed populations.
-
Lu Tian
Professor of Biomedical Data Science and, by courtesy, of Statistics
Current Research and Scholarly InterestsMy research interest includes
(1) Survival Analysis and Semiparametric Modeling;
(2) Resampling Method ;
(3) Meta Analysis ;
(4) High Dimensional Data Analysis;
(5) Precision Medicine for Disease Diagnosis, Prognosis and Treatment. -
Robert Tibshirani
Professor of Biomedical Data Science and of Statistics
Current Research and Scholarly InterestsMy research is in applied statistics and biostatistics. I specialize in computer-intensive methods for regression and classification, bootstrap, cross-validation and statistical inference, and signal and image analysis for medical diagnosis.
-
Guenther Walther
Professor of Statistics
BioGuenther Walther studied mathematics, economics, and computer science at the University of Karlsruhe in Germany and received his Ph.D. in Statistics from UC Berkeley in 1994.
His research has focused on statistical methodology for detection problems, shape-restricted inference, and mixture analysis, and on statistical problems in astrophysics and in flow cytometry.
He received a Terman fellowship, a NSF CAREER award, and the Distinguished Teaching Award of the Dean of Humanities and Sciences at Stanford. He has served on the editorial boards of the Journal of Computational and Graphical Statistics, the Journal of the Royal Statistical Society, the Annals of Statistics, the Annals of Applied Statistics, and Statistical Science. He was program co-chair of the 2006 Annual Meeting of the Institute of Mathematical Statistics and served on the executive committee of IMS from 1998 to 2012. -
Wing Hung Wong
Stephen R. Pierce Family Goldman Sachs Professor of Science and Human Health and Professor of Biomedical Data Science
Current Research and Scholarly InterestsCurrent interest centers on the application of statistics to biology and medicine. We are particularly interested in questions concerning gene regulation, genome interpretation and their applications to precision medicine.