School of Humanities and Sciences


Showing 1-100 of 371 Results

  • Hans Andersen

    Hans Andersen

    David Mulvane Ehrsam and Edward Curtis Franklin Professor in Chemistry, Emeritus

    BioProfessor Emeritus Hans C. Andersen applies statistical mechanics to develop theoretical understanding of the structure and dynamics of liquids and new computer simulation methods to aid in these studies.

    He was born in 1941 in Brooklyn, New York. He studied chemistry as an undergraduate, then physical chemistry as a doctoral candidate at the Massachusetts Institute of Technology (B.S. 1962, Ph.D. 1966). At MIT he first learned about using a combination of mathematical techniques and the ideas of statistical mechanics to investigate problems of chemical and physical interest. This has been the focus of his research ever since. He joined the Stanford Department of Chemistry as Assistant Professor in 1968, and became Professor of Chemistry in 1980. He was named David Mulvane Ehrsam and Edward Curtis Franklin Professor in Chemistry in 1994. Professor Andersen served as department chairman from 2002 through 2005. Among many honors, his work has been recognized in the Theoretical Chemistry Award and Hildebrand Award in Theoretical and Experimental Chemistry of Liquids from the American Chemical Society, as well as the Dean's Award for Distinguished Teaching and Walter J. Gores Award for Excellence in Teaching at Stanford. He has been elected a member of the National Academy of Sciences, and a fellow of both the American Academy of Arts and Sciences and American Association for the Advancement of Science.

    Professor Andersen’s research program has used both traditional statistical mechanical theory and molecular dynamics computer simulation. Early in his career, he was one of the developers of what has come to be known as the Weeks-Chandler-Andersen theory of liquids, which is a way of understanding the structure, thermodynamics, and dynamics of simple dense liquids. Later, he developed several new simulation techniques – now in common use – for exploring the behavior of liquids, such as simulation of a system under constant pressure and/or temperature. He used computer simulations of normal and supercooled liquids to study the temperature dependence of molecular motion in liquids, crystallization in supercooled liquids, and the structure of amorphous solids.

    Professor Andersen also developed and analyzed a class of simple lattice models, called facilitated kinetic Ising models, which were then widely used by others to provide insight into the dynamics of real liquids. He simulated simple models of rigid rod polymers to understand the dynamics of this type of material. More recently, in collaboration with Professor Greg Voth of the University of Chicago, he has applied statistical mechanical ideas to the development of coarse grained models of liquids and biomolecules. Such models can be used to simulate molecular systems on long time scales. He has also used mode coupling theory to describe and interpret experiments on rotational relaxation in supercooled liquids and nematogens, in collaboration with Professor Michael Fayer of the Stanford Chemistry Department.

  • Steven Banik

    Steven Banik

    Assistant Professor of Chemistry

    BioSteven Banik’s research interests center on rewiring mammalian biology and chemical biotechnology development using molecular design and construction. Projects in the Banik lab combine chemical biology, organic chemistry, protein engineering, cell and molecular biology to precisely manipulate the biological machines present in mammalian cells. Projects broadly aim to perform new functions that shed light on regulatory machinery and the potential scope of mammalian biology. A particular focus is the study of biological mechanisms that can be coopted by synthetic molecules (both small molecules and proteins). These concepts are applied to develop new therapeutic strategies for treating aging-related disorders, genetic diseases, and cancer.

    Prior to joining the faculty at Stanford, Steven was a NIH and Burroughs CASI postdoctoral fellow advised by Prof. Carolyn Bertozzi at Stanford. His postdoctoral research developed approaches for targeted protein degradation from the extracellular space with lysosome targeting chimeras (LYTACs). He received his Ph.D. from Harvard University in 2016, where he worked with Prof. Eric Jacobsen on synthetic methods for the selective, catalytic difluorination of organic molecules and new approaches for generating and controlling reactive cationic intermediates in asymmetric catalysis.

  • Zhenan Bao

    Zhenan Bao

    K. K. Lee Professor and Professor, by courtesy, of Materials Science and Engineering and of Chemistry

    BioZhenan Bao joined Stanford University in 2004. She is currently a K.K. Lee Professor in Chemical Engineering, and with courtesy appointments in Chemistry and Material Science and Engineering. She was the Department Chair of Chemical Engineering from 2018-2022. She founded the Stanford Wearable Electronics Initiative (eWEAR) and is the current faculty director. She is also an affiliated faculty member of Precourt Institute, Woods Institute, ChEM-H and Bio-X. Professor Bao received her Ph.D. degree in Chemistry from The University of Chicago in 1995 and joined the Materials Research Department of Bell Labs, Lucent Technologies. She became a Distinguished Member of Technical Staff in 2001. Professor Bao currently has more than 700 refereed publications and more than 80 US patents with a Google Scholar H-index 210.

    Bao is a member of the US National Academy of Engineering, the American Academy of Arts and Sciences and the National Academy of Inventors. Bao was elected a foreign member of the Chinese Academy of Science in 2021. She is a Fellow of AAAS, ACS, MRS, SPIE, ACS POLY and ACS PMSE.

    Bao is a member of the Board of Directors for the Camille and Dreyfus Foundation from 2022. She served as a member of Executive Board of Directors for the Materials Research Society and Executive Committee Member for the Polymer Materials Science and Engineering division of the American Chemical Society. She was an Associate Editor for the Royal Society of Chemistry journal Chemical Science, Polymer Reviews and Synthetic Metals. She serves on the international advisory board for Advanced Materials, Advanced Energy Materials, ACS Nano, Accounts of Chemical Reviews, Advanced Functional Materials, Chemistry of Materials, Chemical Communications, Journal of American Chemical Society, Nature Asian Materials, Materials Horizon and Materials Today. She is one of the Founders and currently sits on the Board of Directors of C3 Nano Co. and PyrAmes, both are silicon valley venture funded companies.

    Bao was a recipient of the VinFuture Prize Female Innovator 2022, ACS Award of Chemistry of Materials 2022, MRS Mid-Career Award in 2021, AICHE Alpha Chi Sigma Award 2021, ACS Central Science Disruptor and Innovator Prize in 2020, ACS Gibbs Medal in 2020, the Wilhelm Exner Medal from the Austrian Federal Minister of Science in 2018, the L'Oreal UNESCO Women in Science Award North America Laureate in 2017. She was awarded the ACS Applied Polymer Science Award in 2017, ACS Creative Polymer Chemistry Award in 2013 ACS Cope Scholar Award in 2011. She is a recipient of the Royal Society of Chemistry Beilby Medal and Prize in 2009, IUPAC Creativity in Applied Polymer Science Prize in 2008, American Chemical Society Team Innovation Award 2001, R&D 100 Award, and R&D Magazine Editors Choice Best of the Best new technology for 2001.

  • Stacey Bent

    Stacey Bent

    Vice Provost, Graduate Edu & Postdoc Affairs, Jagdeep & Roshni Singh Professor in the School of Engineering, Professor of Energy Science Eng, Sr Fellow at Precourt & Professor, by courtesy, of Electrical Eng, Materials Sci Eng & Chemistry

    BioThe research in the Bent laboratory is focused on understanding and controlling surface and interfacial chemistry and applying this knowledge to a range of problems in semiconductor processing, micro- and nano-electronics, nanotechnology, and sustainable and renewable energy. Much of the research aims to develop a molecular-level understanding in these systems, and hence the group uses of a variety of molecular probes. Systems currently under study in the group include functionalization of semiconductor surfaces, mechanisms and control of atomic layer deposition, molecular layer deposition, nanoscale materials for light absorption, interface engineering in photovoltaics, catalyst and electrocatalyst deposition.

  • Carolyn Bertozzi

    Carolyn Bertozzi

    Baker Family Director of Sarafan ChEM-H, Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences and Professor, by courtesy, of Chemical and Systems Biology and of Radiology

    BioProfessor Carolyn Bertozzi's research interests span the disciplines of chemistry and biology with an emphasis on studies of cell surface sugars important to human health and disease. Her research group profiles changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and uses this information to develop new diagnostic and therapeutic approaches, most recently in the area of immuno-oncology.

    Dr. Bertozzi completed her undergraduate degree in Chemistry at Harvard University and her Ph.D. at UC Berkeley, focusing on the chemical synthesis of oligosaccharide analogs. During postdoctoral work at UC San Francisco, she studied the activity of endothelial oligosaccharides in promoting cell adhesion at sites of inflammation. She joined the UC Berkeley faculty in 1996. A Howard Hughes Medical Institute Investigator since 2000, she came to Stanford University in June 2015, among the first faculty to join the interdisciplinary institute ChEM-H (Chemistry, Engineering & Medicine for Human Health). She is now the Baker Family Director of Stanford ChEM-H.

    Named a MacArthur Fellow in 1999, Dr. Bertozzi has received many awards for her dedication to chemistry, and to training a new generation of scientists fluent in both chemistry and biology. She has been elected to the Institute of Medicine, National Academy of Sciences, and American Academy of Arts and Sciences; and received the Lemelson-MIT Prize, the Heinrich Wieland Prize, the ACS Award in Pure Chemistry, and the Chemistry of the Future Solvay Prize, among others.

    The Bertozzi Group develops chemical tools to study the glycobiology underlying diseases such as cancer, inflammation, tuberculosis and most recently COVID-19. She is the inventor of "bioorthogonal chemistry", a class of chemical reactions compatible with living systems that enable molecular imaging and drug targeting. Her group also developed new therapeutic modalities for targeted degradation of extracellular biomolecules, such as antibody-enzyme conjugates and Lysosome Targeting Chimeras (LYTACs). As well, her group studies NGly1 deficiency, a rare genetic disease characterized by loss of the human N-glycanase.

    Several of the technologies developed in the Bertozzi lab have been adapted for commercial use. Actively engaged with several biotechnology start-ups, Dr. Bertozzi cofounded Redwood Bioscience, Enable Biosciences, Palleon Pharmaceuticals, InterVenn Bio, OliLux Bio, Grace Science LLC and Lycia Therapeutics. She is also a member of the Board of Directors of Lilly.

  • Ahanjit Bhattacharya

    Ahanjit Bhattacharya

    Postdoctoral Scholar, Chemistry

    BioAhanjit Bhattacharya is a postdoctoral researcher in the lab of Steven Boxer at the Department of Chemistry. His core philosophy of research is "learning through building". Ahanjit carried out his doctoral research at the University of California San Diego. He worked on designing artificial cellular systems from fundamental building blocks. He also has a deep interest in understanding the origins and evolution of life. Ahanjit's major accomplishments are development of lipid compartments as programmable synthetic cells and organelles, and development of minimal biochemical strategies for synthesis of membrane-forming lipids. His experience with lipid materials inspired him to gain expertise in the area of membrane biophysics. Currently, Ahanjit is working on physical mechanisms of fusion of enveloped viruses with lipid membranes. He is also trying to understand structure-function relationships in complex archaeal lipids. He uses a host of biophysical tools which includes X-ray scattering, single particle microscopy, and electron microscopy. Ahanjit is passionate about communicating science and making it a transformational force for betterment of society and humanity.

  • Steven Boxer

    Steven Boxer

    Camille Dreyfus Professor of Chemistry

    Current Research and Scholarly InterestsPlease visit my website for complete information:
    http://www.stanford.edu/group/boxer/

  • John Brauman

    John Brauman

    J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioJohn Brauman’s research has advanced the understanding of the factors that determine the rates and products of chemical reactions. His primary areas of effort have involved the spectroscopy, photochemistry, reaction dynamics, and reaction mechanisms of gas-phase ions.

    John I. Brauman was born in Pittsburgh, PA in 1937. He attended the Massachusetts Institute of Technology (S.B. 1959) and the University of California at Berkeley (Ph.D. 1963). Following a National Science Foundation Postdoctoral Fellowship at the University of California, Los Angeles, he accepted a position at Stanford University where he is now J. G. Jackson - C. J. Wood Professor of Chemistry Emeritus, and serves as Associate Dean of Research. He was previously Department Chair and Associate Dean for Natural Sciences.

    Brauman’s work has been recognized in the National Medal of Science, National Academy of Sciences Award in Chemical Sciences, Linus Pauling Medal, Dean's Award for Distinguished Teaching from Stanford University, among many other honors. He is a member of the National Academy of Sciences, American Academy of Arts and Sciences, American Philosophical Society, a Fellow of the American Association for the Advancement of Science, Fellow of the American Chemical Society, and Honorary Fellow of the California Academy of Sciences. He received the 2017 ACS Parsons Award in recognition of his service to public science communication and policy, which includes roles as Deputy Editor for Physical Sciences and Editorial Board Chair for Science magazine, and Home Secretary of the National Academy of Sciences.

    Research in the Brauman Group centered on structure and reactivity. Brauman has studied ionic reactions in the gas phase, including acid-base chemistry, the mechanisms of proton transfers, nucleophilic displacement, and addition-elimination reactions. His work has explored the shape of the potential surfaces and the dynamics of reactions on these surfaces. He has made contributions to the field of electron photodetachment spectroscopy of negative ions, measurements of electron affinities, the study of dipole-supported electronic states, and multiple photon infrared activation of ions. He has also studied mechanisms of solution and gas phase organic reactions as well as organometallic reactions and the behavior of biomimetic organometallic species.

  • Megan Brennan

    Megan Brennan

    Lecturer

    BioDr. Megan Brennan's interests include the development of organic chemistry lab courses that give students hands-on opportunities to explore chemistry while reinforcing and building upon concepts learned in lecture classes. She aims for her labs to bring chemistry to life, and to afford students a chance to have fun and experience a taste of scientific discovery.

    While studying chemistry at Lafayette College (B.S. 2002), Dr. Brennan worked on the preparation of triazaphenanthrenes and the Oxa–Pictet–Spengler reaction of 1-(3-furyl)alkan-2-ols. She completed her doctoral work at Stanford (Ph.D. 2008), conducting her thesis research in palladium asymmetric allylic alkylation under the advisement of Professor Barry Trost. During her postdoctoral research with Professor Scott Miller at Yale University, she investigated the use of peptides containing a thiazole side chain for use in acyl anion chemistry. She joined the teaching staff at University of California, Berkeley in 2010 before coming returning to Stanford in 2011 to spearhead the development of a new summer organic chemistry sequence, a comprehensive course designed for pre-meds, offering an entire year of organic chemistry in nine weeks.

    Dr. Brennan also acts as the liaison to the chemistry majors, to promote events with faculty in both the academic and social aspect: providing an environment that allows students to be comfortable and able to learn, while helping them take advantage of every opportunity that Stanford offers.

    Dr. Brennan's current research is in the development classroom experiments that bring cutting edge industrial and academic research into the undergraduate laboratory experience.

  • Noah Burns

    Noah Burns

    Associate Professor of Chemistry

    Current Research and Scholarly InterestsResearch in our group explores the boundaries of modern organic synthesis to enable the more rapid creation of the highest molecular complexity in a predictable and controllable fashion. We are particularly inspired by natural products not only because of their importance as synthetic targets but also due to their ability to serve as invaluable identifiers of unanswered scientific questions.

    One major focus of our research is selective halogenation of organic molecules. Dihalogenation and halofunctionalization encompass some of the most fundamental transformations in our field, yet methods capable of accessing relevant halogenated motifs in a chemo-, regio-, and enantioselective fashion are lacking.

    We are also interested in the practical total synthesis of natural products for which there is true impetus for their construction due to unanswered chemical, medicinal, biological, or biophysical questions. We are specifically engaged in the construction of unusual lipids with unanswered questions regarding their physical properties and for which synthesis offers a unique opportunity for study.

  • Lynette Cegelski

    Lynette Cegelski

    Professor of Chemistry

    Current Research and Scholarly InterestsOur research program is inspired by the challenge and importance of elucidating chemical structure and function in complex biological systems and the need for new strategies to treat infectious diseases. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We have introduced uniquely enabling problem-solving approaches integrating solid-state NMR spectroscopy with microscopy and biochemical and biophysical tools to determine atomic- and molecular-level detail in complex macromolecular assemblies and whole cells and biofilms. We are uncovering new chemistry and new chemical structures produced in nature. We identify small molecules that influence bacterial assembly processes and use these in chemical genetics approaches to learn about bacterial cell wall, amyloid and biofilm assembly.

    Translationally, we have launched a collaborative antibacterial drug design program integrating synthesis, chemical biology, and mechanistic biochemistry and biophysics directed at the discovery and development of new antibacterial therapeutics targeting difficult-to-treat bacteria.

  • James K. Chen

    James K. Chen

    Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry

    Current Research and Scholarly InterestsOur laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.

  • Christopher Chidsey

    Christopher Chidsey

    Associate Professor of Chemistry, Emeritus

    Current Research and Scholarly InterestsThe Chidsey group research interest is to build the chemical base for molecular electronics. To accomplish this, we synthesize the molecular and nanoscopic systems, build the analytical tools and develop the theoretical understanding with which to study electron transfer between electrodes and among redox species through insulating molecular bridges

  • James Collman

    James Collman

    George A. and Hilda M. Daubert Professor of Chemistry, Emeritus

    BioProfessor Emeritus James Collman has made landmark contributions to inorganic chemistry, metal ion biochemistry, homogeneous catalysis, and transition metal organometallic chemistry. He pioneered numerous now-popular research tools to reveal key structural and functional details of metalloenzymes essential to respiration and energy, and hemoglobin and myoglobin, essential to oxygen transport in the blood.

    Born 1932 in Beatrice, Nebraska, James P. Collman studied chemistry at U. Nebraska–Lincoln (B.S. 1954, M.S. 1956). His doctoral work at U. Illinois at Urbana-Champaign (Ph.D., 1958) focused on Grignard reagents. As a faculty member at U. North Carolina, he demonstrated aromatic reactivity in metal acetylacetonates, and he developed metal complexes that hydrolyze peptide bonds under physiological conditions. He came to Stanford University as Professor of Chemistry in 1967. Among many honors, Prof. Collman’s was elected to the National academy of Sciences in 1975, and named California Scientist of the Year in 1983.

    At Stanford, Prof. Collman invented a new paradigm for studying biological systems using functional synthetic analogs of metal-containing enzyme systems, free from the protein coatings that can affect metalloprotein chemical properties. This strategy allowed him to elucidate the intrinsic reactivity of the metal center as well as the effects of protein-metal interactions on biological function.

    One focal point of this research has involved heme-proteins such as the oxygen (O2) carrier hemoglobin (Hb), and the O2-storing protein myoglobin (Mb). Prof. Collman was the first to prepare and characterize stable, functional analogues of the Hb and Mb active sites, which contain an iron derivative of the large flat “porphyrin” ligand. In his “picket fence” porphyrin, groups installed on the periphery block side reactions, which would otherwise degrade the structure. This protected iron complex manifests the unique magnetic, spectroscopic and structural characteristics of the O2-binding Hb and Mb sites, and exhibits very similar O2-binding affinities.

    The Collman Group also prepared functional mimics of the O2-binding/reducing site in a key respiration enzyme, cytochrome c oxidase, CcO, which converts O2 to H2O during biosynthesis of the energy storage molecule ATP. This enzyme must be very selective: partial O2 reduction products are toxic. Prof. Collman invented a powerful synthetic strategy to create analogs of the CcO active site and applied novel electrochemical techniques to demonstrate that these models catalyze the reduction of O2 to water without producing toxic partially-reduced species. He was able to mimic slow, rate-limiting electron delivery by attaching his CcO model to a liquid-crystalline membrane using “click chemistry.” He demonstrated that hydrogen sulfide molecules and heterocycles reversibly bind to the metal centers at CcO’s active site, connecting a synthetic enzyme model to simple molecules that reversibly inhibit respiration. These respiration inhibitors exhibit physiological properties, affecting blood clotting and controlling the effects of the hormone, nitric oxide, NO.

    In addition, Prof. Collman performed fundamental studies of organometallic reactions. He also prepared and characterized homodinuclear and heterodinuclear complexes having metal-metal multiple bonds, and made the first measurements of the rotational barriers found in multiple metal-metal bonds.

    Prof. Collman’s impactful textbook “Principles and Applications of Organotransition Metal Chemistry” has seen multiple editions. His book “Naturally Dangerous: Surprising Facts About Food, Health, and the Environment” explains the science behind everyday life, and received favorable reviews in Nature and The Washington Post.

  • Bianxiao Cui

    Bianxiao Cui

    Job and Gertrud Tamaki Professor of Chemistry

    Current Research and Scholarly InterestsOur objective is to develop new biophysical methods to advance current understandings of cellular machinery in the complicated environment of living cells. Currently, we are focusing on four research areas: (1) Membrane curvature at the nano-bio interface; (2) Nanoelectrode arrays (NEAs) for scalable intracellular electrophysiology; (3) Electrochromic optical recording (ECORE) for neuroscience; and (4) Optical control of neurotrophin receptor tyrosine kinases.

  • Yi Cui

    Yi Cui

    Fortinet Founders Professor, Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, Senior Fellow at Woods and Professor, by courtesy, of Chemistry

    BioCui studies fundamentals and applications of nanomaterials and develops tools for their understanding. Research Interests: nanotechnology, batteries, electrocatalysis, wearables, 2D materials, environmental technology (water, air, soil), cryogenic electron microscopy.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Laura M.K. Dassama

    Laura M.K. Dassama

    Assistant Professor of Chemistry and of Microbiology and Immunology

    BioLaura Dassama is a chemical biologist who uses principles from chemistry and physics to understand complex biological phenomena, and to leverage that understanding for the modulation of biological processes. Her current research focuses on deciphering the molecular recognition mechanisms of multidrug transporters implicated in drug resistance, rational engineering and repurposing of natural products, and control of transcription factors relevant to sickle cell disease.

  • Joseph M. DeSimone

    Joseph M. DeSimone

    Sanjiv Sam Gambhir Professor of Translational Medicine, Professor of Chemical Engineering and, by courtesy, of Chemistry, of Materials Science and Engineering, and of Operations, Information and Technology at the Graduate School of Business

    BioJoseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford University. He holds appointments in the Departments of Radiology and Chemical Engineering with courtesy appointments in the Department of Chemistry and in Stanford’s Graduate School of Business.

    The DeSimone laboratory's research efforts are focused on developing innovative, interdisciplinary solutions to complex problems centered around advanced polymer 3D fabrication methods. In Chemical Engineering and Materials Science, the lab is pursuing new capabilities in digital 3D printing, as well as the synthesis of new polymers for use in advanced additive technologies. In Translational Medicine, research is focused on exploiting 3D digital fabrication tools to engineer new vaccine platforms, enhanced drug delivery approaches, and improved medical devices for numerous conditions, with a current major focus in pediatrics. Complementing these research areas, the DeSimone group has a third focus in Entrepreneurship, Digital Transformation, and Manufacturing.

    Before joining Stanford in 2020, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder, Board Chair, and former CEO (2014 - 2019) of the additive manufacturing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and is a named inventor on over 200 issued patents. Additionally, he has mentored 80 students through Ph.D. completion in his career, half of whom are women and members of underrepresented groups in STEM.

    In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation, the highest U.S. honor for achievement and leadership in advancing technological progress. He has received numerous other major awards in his career, including the U.S. Presidential Green Chemistry Challenge Award (1997); the American Chemical Society Award for Creative Invention (2005); the Lemelson-MIT Prize (2008); the NIH Director’s Pioneer Award (2009); the AAAS Mentor Award (2010); the Heinz Award for Technology, the Economy and Employment (2017); the Wilhelm Exner Medal (2019); the EY Entrepreneur of the Year Award (2019 U.S. Overall National Winner); and the Harvey Prize in Science and Technology (2020). He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech.

  • Justin Du Bois

    Justin Du Bois

    Henry Dreyfus Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology

    BioResearch and Scholarship

    Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C–H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.

    The Du Bois group has described new tactics for the selective conversion of saturated C–H to C–N and C–O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C–H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.

    In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models.

  • Franco Faucher

    Franco Faucher

    Ph.D. Student in Chemistry, admitted Summer 2019

    Current Research and Scholarly InterestsPeptide Therapeutics and Diagnostics
    Phage Display
    Image Guided Surgery
    Cancer Imaging
    Macrocycles
    Covalent Probes

  • Michael Fayer

    Michael Fayer

    David Mulvane Ehrsam and Edward Curtis Franklin Professor of Chemistry

    BioMy research group studies complex molecular systems by using ultrafast multi-dimensional infrared and non-linear UV/Vis methods. A basic theme is to understand the role of mesoscopic structure on the properties of molecular systems. Many systems have structure on length scales large compare to molecules but small compared to macroscopic dimensions. The mesoscopic structures occur on distance scales of a few nanometers to a few tens of nanometers. The properties of systems, such as water in nanoscopic environments, room temperature ionic liquids, functionalized surfaces, liquid crystals, metal organic frameworks, water and other liquids in nanoporous silica, polyelectrolyte fuel cell membranes, vesicles, and micelles depend on molecular level dynamics and intermolecular interactions. Our ultrafast measurements provide direct observables for understanding the relationships among dynamics, structure, and intermolecular interactions.

    Bulk properties are frequently a very poor guide to understanding the molecular level details that determine the nature of a chemical process and its dynamics. Because molecules are small, molecular motions are inherently very fast. Recent advances in methodology developed in our labs make it possible for us to observe important processes as they occur. These measurements act like stop-action photography. To focus on a particular aspect of a time evolving system, we employ sequences of ultrashort pulses of light as the basis for non-linear methods such as ultrafast infrared two dimensional vibrational echoes, optical Kerr effect methods, and ultrafast IR transient absorption experiments.

    We are using ultrafast 2D IR vibrational echo spectroscopy and other multi-dimensional IR methods, which we have pioneered, to study dynamics of molecular complexes, water confined on nm lengths scales with a variety of topographies, molecules bound to surfaces, ionic liquids, and materials such as metal organic frameworks and porous silica. We can probe the dynamic structures these systems. The methods are somewhat akin to multidimensional NMR, but they probe molecular structural evolution in real time on the relevant fast time scales, eight to ten orders of magnitude faster than NMR. We are obtaining direct information on how nanoscopic confinement of water changes its properties, a topic of great importance in chemistry, biology, geology, and materials. For the first time, we are observing the motions of molecular bound to surfaces. In biological membranes, we are using the vibrational echo methods to study dynamics and the relationship among dynamics, structure, and function. We are also developing and applying theory to these problems frequently in collaboration with top theoreticians.

    We are studying dynamics in complex liquids, in particular room temperature ionic liquids, liquid crystals, supercooled liquids, as well as in influence of small quantities of water on liquid dynamics. Using ultrafast optical heterodyne detected optical Kerr effect methods, we can follow processes from tens of femtoseconds to ten microseconds. Our ability to look over such a wide range of time scales is unprecedented. The change in molecular dynamics when a system undergoes a phase change is of fundamental and practical importance. We are developing detailed theory as the companion to the experiments.

    We are studying photo-induced proton transfer in nanoscopic water environments such as polyelectrolyte fuel cell membranes, using ultrafast UV/Vis fluorescence and multidimensional IR measurements to understand the proton transfer and other processes and how they are influenced by nanoscopic confinement. We want to understand the role of the solvent and the systems topology on proton transfer dynamics.