School of Humanities and Sciences


Showing 281-300 of 376 Results

  • Mark J. Schnitzer

    Mark J. Schnitzer

    Professor of Biology, of Applied Physics and of Neurosurgery (Adult Neurosurgery)

    Current Research and Scholarly InterestsThe goal of our research is to advance experimental paradigms for understanding normal cognitive and disease processes at the level of neural circuits, with emphasis on learning and memory processes. To advance these paradigms, we invent optical brain imaging techniques, several of which have been widely adopted. Our neuroscience studies combine these imaging innovations with behavioral, electrophysiological, optogenetic and computational methods, enabling a holistic approach to brain science.

  • Molly Schumer

    Molly Schumer

    Assistant Professor of Biology

    BioMolly Schumer is an Assistant Professor in Biology. She is interested in genetics and evolutionary biology. After receiving her PhD at Princeton, she did her postdoctoral work at Columbia and was a Junior Fellow in the Harvard Society of Fellows and Hanna H. Gray Fellow at Harvard Medical School. Current research in the lab centers on understanding the genetic mechanisms of evolution, with a focus on natural populations.

  • Jennifer Schwartz Poehlmann

    Jennifer Schwartz Poehlmann

    Senior Lecturer of Chemistry

    BioReaching out to Stanford’s diverse body of students and beyond to share the excitement of scientific discovery has been a growing passion for Dr. Jennifer Schwartz Poehlmann. In addition to coordinating and co-teaching Stanford’s freshmen chemistry sequence, she takes a leadership role in developing training programs for teaching assistants and enhancing classroom and lab experiences for undergraduates, while also providing STEM learning opportunities for incoming freshmen and local high school students.

    Jennifer Schwartz Poehlmann studied chemistry at Washington University in Saint Louis Missouri (A.B. 2002) before coming to Stanford University as a graduate student (Ph.D. 2008). Her thesis work under Prof. Edward Solomon addressed structural contributions to reactivity in active sites of non-heme di-iron enzymes, including ferritins. She joined the Stanford Center (now Vice Provost) for Teaching and Learning as a Teaching Fellow in 2008. In 2009, she became Lecturer and Introductory Course Coordinator for the Department of Chemistry, and in 2011 was promoted to Senior Lecturer. She has received multiple awards for her teaching and training work, including the Walter J. Gores Award for Excellence in Teaching, Dean’s Award for Achievements in Teaching, Hoagland Award Fund for Innovations in Undergraduate Teaching, and Society of Latino Engineers and School of Engineering’s Professor of the Year Award.

    Teaching
    Dr. Schwartz coordinates and co-teaches the introductory course sequence of Chem31A, 31B, and 33 for about 450 students each year. She has also created a set of companion courses (Chem31A-C, 31B-C, and 33-C) designed to provide motivated students an opportunity to build stronger study habits and problem solving tools that help them persevere in the sciences regardless of prior science background. In parallel, she has been involved in the creation and teaching of the Leland Scholars Program, which facilitates the transition to college for incoming freshman intending to study in STEM or pre-health fields.

    Instructor Training
    Dr. Schwartz has always believed that well-prepared and enthusiastic teachers inspire and motivate learning, yet excellent teaching requires training, feedback, reflection and support. She has worked both within the department and more broadly to help ensure that teaching assistants throughout the university receive the training, practice and mentorship they need to grow and excel as educators. She previously directed the Department of Chemistry’s TA Training program and, with the Vice Provost for Teaching and Learning, co-founded and directs the Mentors in Teaching Program, MinT, which provides training and resources to teaching mentors from more than 15 departments on campus. Through MinT, advanced graduate students learn effective ways to mentor TAs, through mid-quarter feedback, classroom observation, establishment of teaching goals, and workshops that enable new TAs to better engage with students in the classroom.

    Enhanced Learning Experiences
    Dr. Schwartz has been heavily involved in the development of hands-on, guided-inquiry lab activities that are now fully integrated into lab/lecture courses throughout the introductory general and organic chemistry sequence. Through the “Inspiring Future Scientists in Chemistry” Outreach Program, she is also helping to bring the excitement of exploring real-world chemistry into local high schools. She works with local high school teachers to design lab experiences that reinforce and compliment the chemistry concepts in the California State curriculum. Stanford Chemistry students take these activities to local high schools, providing hundreds of students the opportunity to work with enthusiastic young scientists while getting hands-on experience in chemistry. The program aims to demonstrate how chemistry relates to the ‘real world’ and to promote an appreciation for both science and higher education.

  • H Schwettman

    H Schwettman

    Professor of Physics, Emeritus

    BioAlan received his PhD from Rice University. He has acted as a research associate, associate professor, and professor at Stanford University. Research interests include the development of optical techniques that exploit the unique capabilities of the Free Electron Laser (FEL) in materials and biomedical research.

  • Naima G. Sharaf

    Naima G. Sharaf

    Assistant Professor of Biology and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsResearch in the lab bridges biology, microbiology, and immunology to translate lipoprotein research into therapeutics

  • Carla Shatz

    Carla Shatz

    Sapp Family Provostial Professor, The Catherine Holman Johnson Director of Stanford Bio-X and Professor of Biology and of Neurobiology

    Current Research and Scholarly InterestsThe goal of research in the Shatz Laboratory is to discover how brain circuits are tuned up by experience during critical periods of development both before and after birth by elucidating cellular and molecular mechanisms that transform early fetal and neonatal brain circuits into mature connections. To discover mechanistic underpinnings of circuit tuning, the lab has conducted functional screens for genes regulated by neural activity and studied their function for vision, learning and memory.

  • Kang Shen

    Kang Shen

    Vincent V.C. Woo Director, Wu Tsai Neurosciences Institute, Frank Lee and Carol Hall Professor and Professor of Biology and of Pathology

    Current Research and Scholarly InterestsThe connectivity of a neuron (its unique constellation of synaptic inputs and outputs) is essential for its function. Neuronal connections are made with exquisite accuracy between specific types of neurons. How each neuron finds its synaptic partners has been a central question in developmental neurobiology. We utilize the relatively simple nervous system of nematode C. elegans, to search for molecules that can specify synaptic connections and understand the molecular mechanisms of synaptic as

  • Zhi-Xun Shen

    Zhi-Xun Shen

    Paul Pigott Professor of Physical Sciences, Professor of Applied Physics, of Physics and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsDr. Shen's main research interest lies in the area of condensed matter and materials physics, as well as the applications of materials and devices. He develops photon based innovative instrumentation and advanced experimental techniques, ranging from angle-resolved photoemission to microwave imaging, soft x-ray scattering and time domain spectroscopy and scattering. He has created a body of literature that advanced our understanding of quantum materials, including superconductors, semiconductors, novel magnets, topological insulators, novel carbon and electron emitters. He is best known for his discoveries of the momentum structure of anisotropic d-wave pairing gap and anomalous normal state pseudogap in high temperature superconductors. He has further leveraged the advanced characterization tool to make better materials through thin film and interface engineering.

  • Stephen Shenker

    Stephen Shenker

    Richard Herschel Weiland Professor

    Current Research and Scholarly InterestsProfessor Shenker’s research focuses on quantum gravity, in particular string theory and M theory, with an emphasis on nonperturbative aspects.

  • Eva Silverstein

    Eva Silverstein

    Wells Family Director of the Stanford Institute for Theoretical Physics and Professor of Physics

    BioProfessor Silverstein conducts research in theoretical physics -- particularly gravitation and cosmology, as well as recently developing new methods and applications for machine learning.

    What are the basic degrees of freedom and interactions underlying gravitational and particle physics? What is the mechanism behind the initial seeds of structure in the universe, and how can we test it using cosmological observations? Is there a holographic framework for cosmology that applies throughout the history of the universe, accounting for the emergent effects of horizons and singularities? What new phenomena arise in quantum field theory in generic conditions such as finite density, temperature, or in time dependent backgrounds?

    Professor Silverstein attacks basic problems in several areas of theoretical physics. She develops concrete and testable mechanisms for cosmic inflation, accounting for its sensitivity to very high energy physics. This has led to a fruitful interface with cosmic microwave background research, contributing to a more systematic analysis of its observable phenomenology.
    Professor Silverstein also develops mechanisms for stabilizing the extra dimensions of string theory to model the accelerated expansion of the universe. In addition, Professor Silverstein develops methods to address questions of quantum gravity, such as singularity resolution and the physics of black hole and cosmological horizons.

    Areas of focus:
    - optimization algorithms derived from physical dynamics, analyzing its behavior and advantages theoretically and in numerical experiments
    - UV complete mechanisms and systematics of cosmic inflation, including string-theoretic versions of large-field inflation (with gravity wave CMB signatures) and novel mechanisms involving inflaton interactions (with non-Gaussian signatures in the CMB)
    -Systematic theory and analysis of primordial Non-Gaussianity, taking into account strongly non-linear effects in quantum field theory encoded in multi-point correlation functions 
    -Long-range interactions in string theory and implications for black hole physics
    - Concrete holographic models of de Sitter expansion in string theory, aimed at upgrading the AdS/CFT correspondence to cosmology
    - Mechanisms for non-Fermi liquid transport and $2k_F$ singularities from strongly coupled finite density quantum field theory
    - Mechanisms by which the extra degrees of freedom in string theory induce transitions and duality symmetries between spaces of different topology and dimensionality

  • Jon Simon

    Jon Simon

    Associate Professor of Physics and Applied Physics

    Current Research and Scholarly InterestsJon's group focuses on exploring synthetic quantum matter using the unique tools available through quantum and classical optics. We typically think of photons as non-interacting, wave-like particles. By harnessing recent innovations in Rydberg-cavity- and circuit- quantum electrodynamics, the Simonlab is able to make photons interact strongly with one another, mimicking collisions between charged electrons. By confining these photons in ultra-low-loss metamaterial structures, the teams "teach" the photons to behave as though they have mass, are in traps, and are experiencing magnetic fields, all by using the structures to tailor the optical dispersion. In total, this provides a unique platform to explore everything from Weyl-semi-metals, to fractional quantum hall puddles, to Mott insulators and quantum dots, all made of light.

    The new tools developed in this endeavor, from twisted fabry-perot resonators, to Rydberg atom ensembles, Floquet-modulated atoms, and coupled cavity optical mode converters, have broad applications in information processing and communication. Indeed, we are now commissioning a new experiment aimed at interconverting optical and mm-wave photons using Rydberg atoms inside of crossed optical and superconducting millimeter resonators as the transducer.

  • Michael Simon

    Michael Simon

    Professor of Biology

    Current Research and Scholarly InterestsPlanar cell polarity, cell shape and mobility, and control of cell fate

  • Robert Simoni

    Robert Simoni

    Professor, Biology

    Current Research and Scholarly InterestsCholesterol in biological membranes; genetic mechanisms & cholesterol production