School of Humanities and Sciences


Showing 21-40 of 40 Results

  • Aharon Kapitulnik

    Aharon Kapitulnik

    Theodore and Sydney Rosenberg Professor of Applied Physics and Professor of Physics

    BioAharon Kapitulnik is the Theodore and Sydney Rosenberg Professor in Applied Physics at the Departments of Applied Physics and Physics at Stanford University. His research focuses on experimental condensed matter physics, while opportunistically, also apply his methods to tabletop experimental studies of fundamental phenomena in physics. His recent studies cover a broad spectrum of phenomena associated with the behavior of correlated and disordered electron systems, particularly in reduced dimensions, and the development of effective instrumentation to detect subtle signatures of physical phenomena.

    Among other recognitions, his activities earned him the Alfred P. Sloan Fellowship (1986-90), a Presidential Young Investigator Award (1987-92), a Sackler Scholar at Tel-Aviv University (2006), the Heike Kamerlingh Onnes Prize for Superconductivity Experiment (2009), a RTRA (Le Triangle de la Physique) Senior Chair (2010), and the Oliver Buckley Condensed Matter Prize of the American Physical Society (2015). Aharon Kapitulnik is a Fellow of the American Physical Society, a Fellow of the American Academy of Arts and Sciences, and a member of the National Academy of Sciences. Kapitulnik holds a Ph.D. in Physics from Tel-Aviv University (1983).

  • Benjamin Lev

    Benjamin Lev

    Associate Professor of Applied Physics and of Physics

    Current Research and Scholarly InterestsLevLab explores uncharted regimes of strongly correlated and topological matter by pushing the experimental state-of-the-art in ultracold atomic physics, quantum optics, and condensed matter physics. At a billionth of a degree above absolute zero, laser-cooled and trapped gases of neutral atoms are among the coldest objects in the universe. We employ quantum gases as versatile testbeds for exploring the organizing principles of novel quantum matter.

  • David Miller

    David Miller

    W.M. Keck Foundation Professor of Electrical Engineering and Professor, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsMiller studies optical and optoelectronic devices including quantum wells and photonic nanostructures, especially for information sensing, communication, switching and processing. He also investigates more generally the fundamentals of optics in these applications, with current research including dense optical interconnection to silicon electronics, quantum well optical physics and devices, nanometallic photonics, and fundamental limits in optics.

  • W. E. Moerner

    W. E. Moerner

    Harry S. Mosher Professor and Professor, by courtesy, of Applied Physics

    Current Research and Scholarly InterestsLaser spectroscopy and microscopy of single molecules to probe biological systems, one biomolecule at a time. Primary thrusts: fluorescence microscopy far beyond the optical diffraction limit (PALM/STORM/STED), methods for 3D optical microscopy in cells, and trapping of single biomolecules in solution for extended study. We explore protein localization patterns in bacteria, structures of amyloid aggregates in cells, signaling proteins in the primary cilium, and dynamics of DNA and RNA.

  • Vahe Petrosian

    Vahe Petrosian

    Professor of Physics and of Applied Physics

    BioHow do things evolve in the universe? How are particles accelerated in the universe?

    Professor Petrosian’s research covers many topics in the broad area of theoretical astrophysics and cosmology, with a strong focus on high-energy astrophysical processes.

    Cosmological studies deal with global properties of the universe, where the main focus is the understanding of the evolution of the universe at high redshifts, through studies of the evolutions of population of sources such as galaxies and quasars or active galactic nuclei, gamma-ray bursts, using new statistical techniques developed in collaboration with Prof. B. Efron of the Department of Statistics. Another area of research is the use of gravitational lensing in measuring mass in the universe.

    High-energy astrophysics research involves interpretation of non-thermal astronomical sources where particles are accelerated to very high energies and emit various kinds of radiation. These processes occur on many scales and in all sorts of objects: in the magnetosphere of planets, in the interplanetary space, during solar and stellar flares, in the accretion disks and jets around stellar-size and super-massive black holes, at centers of galaxies, in gamma-ray bursts, in supernovae, and in the intra-cluster medium of clusters of galaxies. Plasma physics processes common in all these sources for acceleration of particles and their radiative signature is the main focus of the research here.

  • Stephen Quake

    Stephen Quake

    Lee Otterson Professor in the School of Engineering and Professor of Bioengineering, of Applied Physics and, by courtesy, of Physics

    Current Research and Scholarly InterestsSingle molecule biophysics, precision force measurement, micro and nano fabrication with soft materials, integrated microfluidics and large scale biological automation.

  • Mark J. Schnitzer

    Mark J. Schnitzer

    Professor of Biology and of Applied Physics

    Current Research and Scholarly InterestsThe goal of our research is to advance experimental paradigms for understanding normal cognitive and disease processes at the level of neural circuits, with emphasis on learning and memory processes. To advance these paradigms, we invent optical brain imaging techniques, several of which have been widely adopted. Our neuroscience studies combine these imaging innovations with behavioral, electrophysiological, optogenetic and computational methods, enabling a holistic approach to brain science.

  • Zhi-Xun Shen

    Zhi-Xun Shen

    Paul Pigott Professor in Physical Sciences, Professor of Photon Science, of Physics and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsDr. Shen's main research interest lies in the area of condensed matter and materials physics, as well as the applications of materials and devices. He develops photon based innovative instrumentation and advanced experimental techniques, ranging from angle-resolved photoemission to microwave imaging, soft x-ray scattering and time domain spectroscopy and scattering. He has created a body of literature that advanced our understanding of quantum materials, including superconductors, semiconductors, novel magnets, topological insulators, novel carbon and electron emitters. He is best known for his discoveries of the momentum structure of anisotropic d-wave pairing gap and anomalous normal state pseudogap in high temperature superconductors. He has further leveraged the advanced characterization tool to make better materials through thin film and interface engineering.

  • Andrew Spakowitz

    Andrew Spakowitz

    Associate Professor of Chemical Engineering and of Materials Science and Engineering and, by courtesy, of Applied Physics and of Chemistry

    Current Research and Scholarly InterestsTheory and computation of biological processes and complex materials

  • Yuri Suzuki

    Yuri Suzuki

    Professor of Applied Physics and, by courtesy, of Materials Science and Engineering

    BioCondensed Matter Physics

    My group studies novel ground states and functionality in thin films and heterostructures. We exploit recent advances in atomically precise heteroepitaxy of complex oxides to develop new materials and to probe novel interface phenomena. Many of these phenomena are then incorporated into prototypical device structures. Our recent focus is on strongly correlated materials, especially new spintronic materials, as well as magnetic junction devices and magnetic logic circuits.

    Nanoscience and Quantum Engineering

    My group exploits atomically precise control of thin film materials synthesis and novel patterning techniques to fabricate nanostructures of correlated electron materials. Through these model systems, we develop a fundamental understanding of their behavior at the nanoscale and incorporate them into prototypical devices.

  • Jelena Vuckovic

    Jelena Vuckovic

    Jensen Huang Professor of Global Leadership and Professor, by courtesy, of Applied Physics

    Current Research and Scholarly Interestsphotonics, quantum technologies, quantum optics, inverse design

  • Herman Winick

    Herman Winick

    Professor of Applied Physics (Research), Emeritus

    BioBorn and educated in New York City, he received his AB (1953) and his PhD (1957) from Columbia University. Following a postdoc position at the University of Rochester (1957-59) he continued work in high energy physics and accelerator development at the Cambridge Electron Accelerator at Harvard University (1959-73), serving as Assistant Director. He came to Stanford in 1973 to lead the technical design of the Stanford Synchrotron Radiation Project (SSRP), now SSRL, and served as Deputy Director of the laboratory until his semi-retirement in 1998 (www-ssrl.slac.stanford.edu). He has taught physics at Columbia, Rochester, Harvard, MIT, Northwestern, University of Massachusetts, and Stanford. His 1970’s and 1980’s research developing periodic magnet systems (wigglers and undulators), had a major impact on synchrotron radiation sources and research facilities at Stanford and around the world. Beginning in 1992 he made major contributions to initiating and developing the Linac Coherent Light Source (LCLS), the world’s first X-ray Free Electron Laser. Starting operation in 2009, the LCLS has shifted the major SLAC focus from high energy physics to x-ray sources and research. In 1997 he suggested SESAME, a synchrotron light source involving 9 countries in the Middle East. He has played a major role in the development of this project, on track to start research in 2016 (www.sesame.org.jo). He is now promoting a similar project in Africa. Throughout his adult life he has been an activist in helping dissidents and protecting academic freedom and human rights.