School of Humanities and Sciences


Showing 51-100 of 345 Results

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor in Chemistry

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Gretchen C. Daily

    Gretchen C. Daily

    Bing Professor in Environmental Science and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsLand use, biodiversity dynamics, ecosystem services

  • Laura M.K. Dassama

    Laura M.K. Dassama

    Assistant Professor of Chemistry

    BioThe Dassama laboratory at Stanford performs research directed at understanding and mitigating bacterial multidrug resistance (MDR). Described as an emerging crisis, MDR often results from the misuse of antibiotics and the genetic transfer of resistance mechanisms by microbes. Efforts to combat MDR involve two broad strategies: understanding how resistance is acquired in hopes of mitigating it, and identifying new compounds that could serve as potent antibiotics. The successful implementation of both strategies relies heavily on an interdisciplinary approach, as resistance mechanisms must be elucidated on a molecular level, and formation of new drugs must be developed with precision before they can be used. The laboratory uses both strategies to contribute to current MDR mitigation efforts.

    One area of research involves integral membrane proteins called multidrug and toxin efflux (MATE) pumps that have emerged as key players in MDR because their presence enables bacteria to secrete multiple drugs.The genes encoding these proteins are present in many bacterial genomes. However, the broad substrate range and challenges associated with membrane protein handling have hindered efforts to elucidate and exploit transport mechanisms of MATE proteins. To date, substrates identified for MATE proteins are small and ionic drugs, but recent reports have implicated these proteins in efflux of novel natural product substrates. The group’s approach will focus on identifying the natural product substrates of some of these new MATE proteins, as well as obtaining static and dynamic structures of the proteins during efflux. These efforts will define the range of molecules that can be recognized and effluxed by MATE proteins and reveal how their transport mechanisms can be exploited to curtail drug efflux.

    Another research direction involves the biosynthesis of biologically active natural products. Natural products are known for their therapeutic potential, and those that derive from modified ribosomal peptides are an important emerging class. These ribosomally produced and post-translationally modified peptidic (RiPP) natural products have the potential to substantially diversify the chemical composition of known molecules because the peptides they derive from can tolerate sequence variance, and modifying enzymes can be selected to install specific functional groups. With an interest in producing new antimicrobial and anticancer compounds, the laboratory will exploit the versatility of RiPP natural product biosynthesis. Specifically, efforts in the laboratory will revolve around elucidating the reaction mechanisms of particular biosynthetic enzymes and leveraging that understanding to design and engineer new natural products with desired biological activities.

  • Giulio De Leo

    Giulio De Leo

    Professor of Biology and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsI am a theoretical ecologist mostly interested in investigating factors and processes driving the dynamics of natural and harvested populations and on how to use this knowledge to inform practical management. I have worked broadly on life histories analysis, fishery management, dynamics and control of infectious diseases and environmental impact assessment.

  • Mark Denny

    Mark Denny

    John B. and Jean De Nault Professor of Marine Sciences

    Current Research and Scholarly InterestsBiomechanics, ecology, and ecological physiology

  • Joseph M. DeSimone

    Joseph M. DeSimone

    Sanjiv Sam Gambhir Professor of Translational Medicine, Professor of Chemical Engineering and, by courtesy, of Chemistry and of Operations, Information and Technology at the Graduate School of Business

    BioJoseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford University. He holds appointments in the Departments of Radiology and Chemical Engineering with courtesy appointments in the Department of Chemistry and in Stanford’s Graduate School of Business.

    The DeSimone laboratory's research efforts are focused on developing innovative, interdisciplinary solutions to complex problems centered around advanced polymer 3D fabrication methods. In Chemical Engineering and Materials Science, the lab is pursuing new capabilities in digital 3D printing, as well as the synthesis of new polymers for use in advanced additive technologies. In Translational Medicine, research is focused on exploiting 3D digital fabrication tools to engineer new vaccine platforms, enhanced drug delivery approaches, and improved medical devices for numerous conditions, with a current major focus in pediatrics. Complementing these research areas, the DeSimone group has a third focus in Entrepreneurship, Digital Transformation, and Manufacturing.

    Before joining Stanford in 2020, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder, Board Chair, and former CEO (2014 - 2019) of the additive manufacturing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and is a named inventor on over 200 issued patents. Additionally, he has mentored 80 students through Ph.D. completion in his career, half of whom are women and members of underrepresented groups in STEM.

    In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation, the highest U.S. honor for achievement and leadership in advancing technological progress. He has received numerous other major awards in his career, including the U.S. Presidential Green Chemistry Challenge Award (1997); the American Chemical Society Award for Creative Invention (2005); the Lemelson-MIT Prize (2008); the NIH Director’s Pioneer Award (2009); the AAAS Mentor Award (2010); the Heinz Award for Technology, the Economy and Employment (2017); the Wilhelm Exner Medal (2019); the EY Entrepreneur of the Year Award (2019 U.S. Overall National Winner); and the Harvey Prize in Science and Technology (2020). He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech.

  • Persi Diaconis

    Persi Diaconis

    Mary V. Sunseri Professor and Professor of Mathematics

    Current Research and Scholarly InterestsResearch Interests:
    PROBABILITY THEORY
    BAYESIAN STATISTICS
    STATISTICAL COMPUTING
    COMBINATORICS

  • Savas Dimopoulos

    Savas Dimopoulos

    Hamamoto Family Professor
    On Leave from 04/01/2021 To 06/30/2021

    BioWhat is the origin of mass? Are there other universes with different physical laws?

    Professor Dimopoulos has been searching for answers to some of the deepest mysteries of nature. Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab?

    Elementary particle physics is entering a spectacular new era in which experiments at the Large Hadron Collider at CERN will soon shed light on such questions and lead to a new deeper theory of particle physics, replacing the Standard Model proposed forty years ago. The two leading candidates for new theories are the Supersymmetric Standard Model and theories with Large Extra Dimensions, both proposed by Professor Dimopoulos and collaborators.

    Professor Dimopoulos is collaborating on a number of experiments that use the dramatic advances in atom interferometry to do fundamental physics. These include testing Einstein’s theory of general relativity to fifteen decimal precision, atom neutrality to thirty decimals, and looking for modifications of quantum mechanics. He is also designing an atom-interferometric gravity-wave detector that will allow us to look at the universe with gravity waves instead of light, marking the dawn of gravity wave astronomy and cosmology.

  • Jose R. Dinneny

    Jose R. Dinneny

    Associate Professor of Biology

    Current Research and Scholarly InterestsThe biology of root systems is governed by both micro-scale and systemic signaling that allows the plant to integrate these complex variables into growth and branching decisions that ultimately determine the efficiency resources are captured. Research in my lab is aimed at understanding the response of roots to water-limiting conditions and is exploring this process at different organizational scales from the individual cell type to the level of the whole plant.

  • Rodolfo Dirzo

    Rodolfo Dirzo

    Bing Prof in Environmental Science and Senior Fellow at the Woods Institute for the Environment

    Current Research and Scholarly InterestsEcological and evolutionary aspects of plant-animal interactions, largely but not exclusively, in tropical forest ecosystems.
    Conservation biology in tropical ecosystems.
    Studies on biodiversity.
    Education, at all levels, on scientific practice, ecology and biodiversity conservation.

  • Scott Dixon

    Scott Dixon

    Associate Professor of Biology

    Current Research and Scholarly InterestsMy lab is interested in the relationship between cell death and metabolism. Using techniques drawn from many disciplines my laboratory is investigating how perturbation of intracellular metabolic networks can result in novel forms of cell death, such as ferroptosis. We are interested in applying this knowledge to find new ways to treat diseases characterized by insufficient (e.g. cancer) or excessive (e.g. neurodegeneration) cell death.

  • Sebastian Doniach

    Sebastian Doniach

    Professor of Applied Physics and of Physics, Emeritus

    Current Research and Scholarly InterestsStudy of changes in conformation of proteins and RNA using x-ray scattering

  • David Donoho

    David Donoho

    Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences
    On Leave from 10/01/2020 To 06/30/2021

    BioDavid Donoho is a mathematician who has made fundamental contributions to theoretical and computational statistics, as well as to signal processing and harmonic analysis. His algorithms have contributed significantly to our understanding of the maximum entropy principle, of the structure of robust procedures, and of sparse data description.

    Research Statement:
    My theoretical research interests have focused on the mathematics of statistical inference and on theoretical questions arising in applying harmonic analysis to various applied problems. My applied research interests have ranged from data visualization to various problems in scientific signal processing, image processing, and inverse problems.

  • Persis Drell

    Persis Drell

    Provost, James and Anna Marie Spilker Professor and Professor in the School of Engineering, Professor of Materials Science and Engineering and Professor of Physics

    BioPersis Drell, Provost

    Drell is a physicist who has served on the Stanford faculty since 2002. She is the James and Anna Marie Spilker Professor in the School of Engineering, a professor of materials science and engineering, and a professor of physics. She is the former dean of the Stanford School of Engineering and the former director of the U.S. Department of Energy’s SLAC National Accelerator Laboratory at Stanford.

    Drell received her bachelor’s degree in mathematics and physics from Wellesley College in 1977, followed by a PhD in atomic physics from the University of California, Berkeley, in 1983. She then switched to high-energy experimental physics and worked as a postdoctoral scientist at the Lawrence Berkeley National Laboratory. She joined the physics faculty at Cornell University in 1988.

    In 2002, Drell joined the Stanford faculty as a professor and director of research at SLAC. In her early years at SLAC, she worked on the construction of the Fermi Gamma-ray Space Telescope. In 2005, she became SLAC’s deputy director and was named director two years later. She led the 1,600-employee SLAC National Accelerator Laboratory until 2012. Drell is credited with helping broaden the focus of the laboratory, increasing collaborations between SLAC and the main Stanford campus, and overseeing transformational projects.

    During Drell’s tenure as director, SLAC transitioned from being a laboratory dedicated primarily to research in high-energy physics to one that is now seen as a leader in a number of scientific disciplines. In 2010, the laboratory began operations of the Linac Coherent Light Source (LCLS). LCLS is the world’s most powerful X-ray free electron laser, which is revolutionizing study of the atomic and molecular world. LCLS is used to conduct scientific research and drive applications in energy and environmental sciences, drug development, and materials engineering.

    After serving as the director of SLAC, Drell returned to the Stanford faculty, focusing her research on technology development for free electron lasers and particle astrophysics. Drell was named the dean of the Stanford School of Engineering in 2014.

    As dean of the School of Engineering, Drell catalyzed a collaborative school-wide process, known as the SoE-Future process, to explore the realms of possibility for the future of the School of Engineering and engineering education and research. The process engaged a broad group of stakeholders to ask in what areas the School of Engineering could make significant world-changing impact, and how the school should be configured to address the major opportunities and challenges of the future.

    The process resulted in a set of 10 broad aspirational questions to inspire thought on the school’s potential impact in the next 20 years. The process also resulted in a series of actionable recommendations across three areas – research, education, and culture. Drell’s approach to leading change emphasized the importance of creating conditions to optimize the probability of success.

    As dean, Drell placed an emphasis on diversity and inclusion. She focused on increasing the participation of women and underrepresented minorities in engineering. She also sought to ensure a welcoming and inclusive environment for students of all backgrounds in the school.

    In addition to her administrative responsibilities, Drell teaches a winter-quarter companion course to introductory physics each year for undergraduate students who had limited exposure to the subject in high school.

    Drell is a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and is a fellow of the American Physical Society. She has been the recipient of a Guggenheim Fellowship and a National Science Foundation Presidential Young Investigator Award.

  • Justin Du Bois

    Justin Du Bois

    Henry Dreyfus Professor in Chemistry and Professor, by courtesy, of Chemical and Systems Biology

    BioResearch and Scholarship

    Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C–H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.

    The Du Bois group has described new tactics for the selective conversion of saturated C–H to C–N and C–O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C–H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.

    In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models.

  • John Duchi

    John Duchi

    Assistant Professor of Statistics and of Electrical Engineering

    Current Research and Scholarly InterestsMy work spans statistical learning, optimization, information theory, and computation, with a few driving goals: 1. To discover statistical learning procedures that optimally trade between real-world resources while maintaining statistical efficiency. 2. To build efficient large-scale optimization methods that move beyond bespoke solutions to methods that robustly work. 3. To develop tools to assess and guarantee the validity of---and confidence we should have in---machine-learned systems.

  • Maria Theresa Dulay

    Maria Theresa Dulay

    Senior Research Scientist, Basic Life
    Senior Research Scientist, Basic Life, Rad/Molecular Imaging Program at Stanford

    BioReceived PhD from University of Texas at Austin, Department of Chemistry with Marye Anne Fox
    NIH Postdoctoral Fellow at Stanford University in Richard N. Zare's research lab, Department of Chemistry

  • Bradley Efron

    Bradley Efron

    Max H. Stein Professor and Professor of Statistics and of Biomedical Data Science

    Current Research and Scholarly InterestsResearch Interests:
    BOOTSTRAP
    BIOSTATISTICS
    BAYESIAN STATISTICS

  • Paul Ehrlich

    Paul Ehrlich

    Bing Professor of Population Studies, Emeritus

    Current Research and Scholarly InterestsThe role of the social sciences in dealing with global change

  • Robin Elahi

    Robin Elahi

    Lecturer

    BioI am a lecturer at Stanford University’s Hopkins Marine Station, where I teach courses in kelp forest ecology, statistics, and scientific computing. In general, I study drivers of spatial and temporal change in marine ecosystems. Ongoing and recent projects include:
    -examining the consequences of fisheries closures on fisher behavior
    -understanding why some coral reefs fare better than their neighbors
    -biodiversity and body size change, particularly in the context of recent human impacts

  • Michael Fayer

    Michael Fayer

    David Mulvane Ehrsam and Edward Curtis Franklin Professor in Chemistry

    BioMy research group studies complex molecular systems by using ultrafast multi-dimensional infrared and non-linear UV/Vis methods. A basic theme is to understand the role of mesoscopic structure on the properties of molecular systems. Many systems have structure on length scales large compare to molecules but small compared to macroscopic dimensions. The mesoscopic structures occur on distance scales of a few nanometers to a few tens of nanometers. The properties of systems, such as water in nanoscopic environments, room temperature ionic liquids, functionalized surfaces, liquid crystals, metal organic frameworks, water and other liquids in nanoporous silica, polyelectrolyte fuel cell membranes, vesicles, and micelles depend on molecular level dynamics and intermolecular interactions. Our ultrafast measurements provide direct observables for understanding the relationships among dynamics, structure, and intermolecular interactions.

    Bulk properties are frequently a very poor guide to understanding the molecular level details that determine the nature of a chemical process and its dynamics. Because molecules are small, molecular motions are inherently very fast. Recent advances in methodology developed in our labs make it possible for us to observe important processes as they occur. These measurements act like stop-action photography. To focus on a particular aspect of a time evolving system, we employ sequences of ultrashort pulses of light as the basis for non-linear methods such as ultrafast infrared two dimensional vibrational echoes, optical Kerr effect methods, and ultrafast IR transient absorption experiments.

    We are using ultrafast 2D IR vibrational echo spectroscopy and other multi-dimensional IR methods, which we have pioneered, to study dynamics of molecular complexes, water confined on nm lengths scales with a variety of topographies, molecules bound to surfaces, ionic liquids, and materials such as metal organic frameworks and porous silica. We can probe the dynamic structures these systems. The methods are somewhat akin to multidimensional NMR, but they probe molecular structural evolution in real time on the relevant fast time scales, eight to ten orders of magnitude faster than NMR. We are obtaining direct information on how nanoscopic confinement of water changes its properties, a topic of great importance in chemistry, biology, geology, and materials. For the first time, we are observing the motions of molecular bound to surfaces. In biological membranes, we are using the vibrational echo methods to study dynamics and the relationship among dynamics, structure, and function. We are also developing and applying theory to these problems frequently in collaboration with top theoreticians.

    We are studying dynamics in complex liquids, in particular room temperature ionic liquids, liquid crystals, supercooled liquids, as well as in influence of small quantities of water on liquid dynamics. Using ultrafast optical heterodyne detected optical Kerr effect methods, we can follow processes from tens of femtoseconds to ten microseconds. Our ability to look over such a wide range of time scales is unprecedented. The change in molecular dynamics when a system undergoes a phase change is of fundamental and practical importance. We are developing detailed theory as the companion to the experiments.

    We are studying photo-induced proton transfer in nanoscopic water environments such as polyelectrolyte fuel cell membranes, using ultrafast UV/Vis fluorescence and multidimensional IR measurements to understand the proton transfer and other processes and how they are influenced by nanoscopic confinement. We want to understand the role of the solvent and the systems topology on proton transfer dynamics.

  • Benjamin Ezekiel Feldman

    Benjamin Ezekiel Feldman

    Assistant Professor of Physics

    Current Research and Scholarly InterestsHow do material properties change as a result of interactions among electrons, and what is the nature of the new phases that result? What novel physical phenomena and functionality (e.g., symmetry breaking or topological excitations) can be realized by combining materials and device elements to produce emergent behavior? How can we leverage nontraditional measurement techniques to gain new insight into quantum materials? These are some of the overarching questions we seek to address in our research.

    We are interested in a variety of quantum systems, especially those composed of two-dimensional flakes and heterostructures. This class of materials has been shown to exhibit an incredible variability in their properties, with the further benefit that they are highly tunable through gating and applied fields.

  • Jessica Feldman

    Jessica Feldman

    Assistant Professor of Biology

    Current Research and Scholarly InterestsWe are interested in understanding design principles within cells that contribute to the diversification of cellular form and function. Using a combination of genetic, biochemical, and live imaging approaches, we are investigating how the microtubule cytoskeleton is spatially organized and the mechanisms underlying organizational changes during development.

  • Marcus Feldman

    Marcus Feldman

    Burnet C. and Mildred Finley Wohlford Professor in the School of Humanities and Sciences

    Current Research and Scholarly InterestsHuman genetic and cultural evolution, mathematical biology, demography of China

  • Russell D. Fernald

    Russell D. Fernald

    Benjamin Scott Crocker Professor of Human Biology, Emeritus

    Current Research and Scholarly InterestsIn the course of evolution,two of the strongest selective forces in nature,light and sex, have left their mark on living organisms. I am interested in how the development and function of the nervous system reflects these events. We use the reproductive system to understand how social behavior influences the main system of reproductive action controlled by a collection of cells in the brain containing gonodotropin releasing hormone(GnRH)

  • Chris Field

    Chris Field

    Melvin and Joan Lane Professor for Interdisciplinary Environmental Studies, Director, Woods Institute for the Environment, Professor of Earth System Science, of Biology and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsResearch
    My field is climate-change science, and my research emphasizes human-ecological interactions across many disciplines. Most studies include aspects of ecology, but also aspects of law, sociology, medicine, or engineering.

  • Daniel Fisher

    Daniel Fisher

    David Starr Jordan Professor

    Current Research and Scholarly InterestsEvolutionary & ecological dynamics & diversity, microbial, expt'l, & cancer

  • Ian Fisher

    Ian Fisher

    Director, Geballe Laboratory for Advanced Materials, Professor of Applied Physics and, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsOur research focuses on the study of quantum materials with unconventional magnetic & electronic ground states & phase transitions. Emphasis on design and discovery of new materials. Recent focus on use of strain as a probe of, and tuning parameter for, a variety of electronic states. Interests include unconventional superconductivity, quantum phase transitions, nematicity, multipolar order, instabilities of low-dimensional materials and quantum magnetism.

  • John Fox

    John Fox

    Adjunct Professor

    Current Research and Scholarly InterestsStanford University Research areas center on optimal control methods to improve energy
    efficiency and resource allocation in plug-in hybrid vehicles. Stanford graduate courses
    taught in laboratory techniques and electronic instrumentation. Undergraduate course
    "Energy Choices for the 21st Century"

  • Hunter Fraser

    Hunter Fraser

    Associate Professor of Biology

    Current Research and Scholarly InterestsWe study the evolution of complex traits by developing new experimental and computational methods.

    Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing.

  • Judith Frydman

    Judith Frydman

    Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics

    Current Research and Scholarly InterestsThe long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.

  • Tadashi Fukami

    Tadashi Fukami

    Professor of Biology

    Current Research and Scholarly InterestsEcological and evolutionary community assembly, with emphasis on understanding historical contingency in community structure, ecosystem functioning, biological invasion and ecological restoration, using experimental, theoretical, and comparative methods involving bacteria, protists, fungi, plants, and animals.

  • Kelly Gaffney

    Kelly Gaffney

    Associate Professor of Photon Science and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsThe research team Professor Gaffney leads focuses on time resolved studies of chemical reactions. Recent advances in ultrafast x-ray lasers, like the LCLS at SLAC National Accelerator Laboratory, enable chemical reactions to be observed on the natural time and length scales of the chemical bond – femtoseconds and Ångströms. The knowledge gained from x-ray and optical laser studies will be used to spark new approaches to photo-catalysis and chemical synthesis.