School of Humanities and Sciences


Showing 291-300 of 376 Results

  • Kang Shen

    Kang Shen

    Vincent V.C. Woo Director, Wu Tsai Neurosciences Institute, Frank Lee and Carol Hall Professor and Professor of Biology and of Pathology

    Current Research and Scholarly InterestsThe connectivity of a neuron (its unique constellation of synaptic inputs and outputs) is essential for its function. Neuronal connections are made with exquisite accuracy between specific types of neurons. How each neuron finds its synaptic partners has been a central question in developmental neurobiology. We utilize the relatively simple nervous system of nematode C. elegans, to search for molecules that can specify synaptic connections and understand the molecular mechanisms of synaptic as

  • Zhi-Xun Shen

    Zhi-Xun Shen

    Paul Pigott Professor of Physical Sciences, Professor of Applied Physics, of Physics and Senior Fellow at the Precourt Institute for Energy

    Current Research and Scholarly InterestsDr. Shen's main research interest lies in the area of condensed matter and materials physics, as well as the applications of materials and devices. He develops photon based innovative instrumentation and advanced experimental techniques, ranging from angle-resolved photoemission to microwave imaging, soft x-ray scattering and time domain spectroscopy and scattering. He has created a body of literature that advanced our understanding of quantum materials, including superconductors, semiconductors, novel magnets, topological insulators, novel carbon and electron emitters. He is best known for his discoveries of the momentum structure of anisotropic d-wave pairing gap and anomalous normal state pseudogap in high temperature superconductors. He has further leveraged the advanced characterization tool to make better materials through thin film and interface engineering.

  • Stephen Shenker

    Stephen Shenker

    Richard Herschel Weiland Professor

    Current Research and Scholarly InterestsProfessor Shenker’s research focuses on quantum gravity, in particular string theory and M theory, with an emphasis on nonperturbative aspects.

  • Eva Silverstein

    Eva Silverstein

    Wells Family Director of the Stanford Institute for Theoretical Physics and Professor of Physics

    BioProfessor Silverstein conducts research in theoretical physics -- particularly gravitation and cosmology, as well as recently developing new methods and applications for machine learning.

    What are the basic degrees of freedom and interactions underlying gravitational and particle physics? What is the mechanism behind the initial seeds of structure in the universe, and how can we test it using cosmological observations? Is there a holographic framework for cosmology that applies throughout the history of the universe, accounting for the emergent effects of horizons and singularities? What new phenomena arise in quantum field theory in generic conditions such as finite density, temperature, or in time dependent backgrounds?

    Professor Silverstein attacks basic problems in several areas of theoretical physics. She develops concrete and testable mechanisms for cosmic inflation, accounting for its sensitivity to very high energy physics. This has led to a fruitful interface with cosmic microwave background research, contributing to a more systematic analysis of its observable phenomenology.
    Professor Silverstein also develops mechanisms for stabilizing the extra dimensions of string theory to model the accelerated expansion of the universe. In addition, Professor Silverstein develops methods to address questions of quantum gravity, such as singularity resolution and the physics of black hole and cosmological horizons.

    Areas of focus:
    - optimization algorithms derived from physical dynamics, analyzing its behavior and advantages theoretically and in numerical experiments
    - UV complete mechanisms and systematics of cosmic inflation, including string-theoretic versions of large-field inflation (with gravity wave CMB signatures) and novel mechanisms involving inflaton interactions (with non-Gaussian signatures in the CMB)
    -Systematic theory and analysis of primordial Non-Gaussianity, taking into account strongly non-linear effects in quantum field theory encoded in multi-point correlation functions 
    -Long-range interactions in string theory and implications for black hole physics
    - Concrete holographic models of de Sitter expansion in string theory, aimed at upgrading the AdS/CFT correspondence to cosmology
    - Mechanisms for non-Fermi liquid transport and $2k_F$ singularities from strongly coupled finite density quantum field theory
    - Mechanisms by which the extra degrees of freedom in string theory induce transitions and duality symmetries between spaces of different topology and dimensionality

  • Jon Simon

    Jon Simon

    Associate Professor of Physics and Applied Physics

    Current Research and Scholarly InterestsJon's group focuses on exploring synthetic quantum matter using the unique tools available through quantum and classical optics. We typically think of photons as non-interacting, wave-like particles. By harnessing recent innovations in Rydberg-cavity- and circuit- quantum electrodynamics, the Simonlab is able to make photons interact strongly with one another, mimicking collisions between charged electrons. By confining these photons in ultra-low-loss metamaterial structures, the teams "teach" the photons to behave as though they have mass, are in traps, and are experiencing magnetic fields, all by using the structures to tailor the optical dispersion. In total, this provides a unique platform to explore everything from Weyl-semi-metals, to fractional quantum hall puddles, to Mott insulators and quantum dots, all made of light.

    The new tools developed in this endeavor, from twisted fabry-perot resonators, to Rydberg atom ensembles, Floquet-modulated atoms, and coupled cavity optical mode converters, have broad applications in information processing and communication. Indeed, we are now commissioning a new experiment aimed at interconverting optical and mm-wave photons using Rydberg atoms inside of crossed optical and superconducting millimeter resonators as the transducer.

  • Michael Simon

    Michael Simon

    Professor of Biology

    Current Research and Scholarly InterestsPlanar cell polarity, cell shape and mobility, and control of cell fate

  • Robert Simoni

    Robert Simoni

    Professor, Biology

    Current Research and Scholarly InterestsCholesterol in biological membranes; genetic mechanisms & cholesterol production