School of Humanities and Sciences


Showing 331-340 of 374 Results

  • Barry Trost

    Barry Trost

    Job and Gertrud Tamaki Professor in the School of Humanities and Sciences, Emeritus

    BioBorn in Philadelphia, Pennsylvania, Barry Trost began his university training at the University of Pennsylvania (BA, 1962) and completed his Ph.D. in Chemistry at the Massachusetts Institute of Technology (1965). He moved directly to the University of Wisconsin, where he was promoted to Professor of Chemistry and subsequently Vilas Research Professor. He joined the faculty at Stanford as Professor of Chemistry in 1987 and became Tamaki Professor of Humanities and Sciences in 1990. In addition to serving multiple visiting professorships, Professor Trost was presented with a Docteur honoris causa of the Université Claude-Bernard (Lyon I), France, and in 1997 a Doctor Scientiarum Honoris Causa of the Technion, Haifa, Israel. In recognition of his innovations and scholarship in the field of organic synthesis, Professor Trost has received the ACS Award in Pure Chemistry, ACS Award for Creative Work in Synthetic Organic Chemistry, Arthur C. Cope Scholar Award, and the Presidential Green Chemistry Challenge Award, among many others. Professor Trost has been elected a Fellow of the American Academy of Arts and Sciences, American Chemical Society, and American Association for the Advancement of Science, and a member of the National Academy of Sciences, and served as Chairman of the NIH Medicinal Chemistry Study Section. He has held over 125 special university lectureships and presented over 270 Plenary Lectures at national and international meetings. He has published two books and over 950 scientific articles. He edited a major compendium entitled Comprehensive Organic Synthesis consisting of nine volumes and serves on the editorial board for Science of Synthesis and Reaxys.

    The Trost Group’s research program revolves around the theme of synthesis, including target molecules with potential applications as novel catalysts, as well as antibiotic and antitumor therapies. The work comprises two major activities: 1) developing the tools, i.e., the reactions and reagents, and 2) creating the proper network of reactions to make complex targets readily available from simple starting materials.

    Efforts to develop "chemists' enzymes" – non-peptidic transition metal based catalysts that can perform chemo-, regio-, diastereo-, and especially enantioselective reactions – focus close attention to the question of atom economy to minimize waste, energy, and consumption of raw materials.

    Synthetic efficiency raises the question of metal catalyzed cycloadditions to rings other than six-membered. A general strategy is evolving for a "Diels-Alder" equivalent for formation of five, seven, nine, etc. membered carbo- and heterocyclic rings.

    An exciting new direction derives from the molecular gymnastics acetylenes undergo in the presence of transition metals. Additional specific goals include cycloisomerization to virtually all types of ring sizes and systems with particularly versatile juxtaposition of functionality.

    Palladium and ruthenium catalysts represent a major part of the lab's efforts, in order to invent new synthetic processes together with new opportunities for selectivity complementary to that obtained using other metal complexes. Main group chemistry, especially involving silicon, zinc, and sulfur, also offers many opportunities for new reaction design. Rational design of novel catalysts for asymmetric additions to carbonyl and imine groups are an exciting thrust.From these new synthetic tools evolve new synthetic strategies towards complex natural products. Targets include β-lactam antibiotics, ionophores, steroids and related compounds (e.g., Vitamin D metabolites), alkaloids, nucleosides, carbohydrates, and macrolide, terpenoid, and tetracyclic antitumor and antibiotic agents.

  • Albert Tsao

    Albert Tsao

    Basic Life Research Scientist

    BioHoward Hughes Medical Institute Fellow of The Helen Hay Whitney Foundation

  • Shripad Tuljapurkar

    Shripad Tuljapurkar

    The Dean and Virginia Morrison Professor of Population Studies

    Current Research and Scholarly InterestsStochastic dynamics of human and natural populations; prehistoric societies; probability forecasts including sex ratios, mortality, aging and fiscal balance; life history evolution.

  • John Turneaure

    John Turneaure

    Professor (Research) of Physics, Emeritus

    BioJohn received his PhD in physics from Stanford University. He later became a research associate in W.W. Hansen Experimental Physics Laboratory. Following, he acted as an assistant professor of physics, senior research associate, and professor. Research interests include experimental and observational astrophysics and cosmology.

  • Ravi Vakil

    Ravi Vakil

    Robert Grimmett Professor of Mathematics

    Current Research and Scholarly InterestsAlgebraic geometry and related subjects. For a complete publication list, see my publication page http://math.stanford.edu/~vakil/preprints.html rather than the list here.

  • Andras Vasy

    Andras Vasy

    Robert Grimmett Professor of Mathematics

    Current Research and Scholarly InterestsMy research concentrates on topics in two broad areas of applications of microlocal analysis in which, partly with collaborators, I introduced new ideas in recent years: non-elliptic linear and non-linear partial differential equations (PDE), typically concerning wave propagation or other related phenomena, and inverse problems for X-ray type transforms along geodesics and related problems for determining the metric tensor from boundary measurements.

  • Peter Vitousek

    Peter Vitousek

    Clifford G. Morrison Professor of Population and Resource Studies and Professor of Earth System Science, Emeritus

    Current Research and Scholarly InterestsVitousek's research interests include: evaluating the global cycles of nitrogen and phosphorus, and how they are altered by human activity; understanding how the interaction of land and culture contributed to the sustainability of Hawaiian (and other Pacific) agriculture and society before European contact; and working to make fertilizer applications more efficient and less environmentally damaging (especially in rapidly growing economies)