Institute for Stem Cell Biology and Regenerative Medicine


Showing 1-20 of 32 Results

  • Ash A. Alizadeh, MD/PhD

    Ash A. Alizadeh, MD/PhD

    Moghadam Family Professor
    On Partial Leave from 09/01/2022 To 08/31/2023

    Current Research and Scholarly InterestsMy research is focused on attaining a better understanding of the initiation, maintenance, and progression of tumors, and their response to current therapies toward improving future treatment strategies. In this effort, I employ tools from functional genomics, computational biology, molecular genetics, and mouse models.

    Clinically, I specialize in the care of patients with lymphomas, working on translating our findings in prospective cancer clinical trials.

  • Lay Teng Ang

    Lay Teng Ang

    Instructor, Institute for Stem Cell Biology and Regenerative Medicine

    BioAs a stem cell biologist, I aim to understand the mechanisms through which stem cells differentiate into progressively specialized cell types and to harness this knowledge to artificially generate pure populations of desired cell types from stem cells. My work over the past ten years has centered on pluripotent stem cells (PSCs, which include embryonic and pluripotent stem cells), which can generate any of the hundreds of diverse cell types in the body. However, it has been notoriously challenging to guide PSCs to differentiate into a pure population of a given cell type. Current differentiation strategies typically generate heterogeneous cell populations unsuitable for basic research or clinical applications. To address this challenge, I mapped the cascade of branching lineage choices through which PSCs differentiate into various endodermal and mesodermal cell types. I then developed effective methods to differentiate PSCs into specific lineages by providing the extracellular signal(s) that specify a given lineage while inhibiting the signals that induce the alternate fate(s), enabling the generation of highly-pure human heart and bone (Loh & Chen et al., 2016; Cell) and liver (Loh & Ang et al., 2014; Cell Stem Cell) from PSCs. My laboratory currently focuses on differentiating human PSCs into liver progenitors (Ang et al., 2018; Cell Reports) and blood vessel cells (Ang et al., 2022; Cell).

    I earned my Ph.D. jointly from the University of Cambridge and A*STAR and was subsequently appointed as a Research Fellow and, later, a Senior Research Fellow at the Genome Institute of Singapore. I then moved my laboratory to Stanford University as a Siebel Investigator and Instructor at the Stanford Institute for Stem Cell Biology & Regenerative Medicine. My laboratory has been supported by the Siebel Investigatorship, California Institute for Regenerative Medicine, and other sources.

  • Philip Beachy

    Philip Beachy

    The Ernest and Amelia Gallo Professor, Professor of Urology, of Developmental Biology and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsFunction of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation), in injury repair and regeneration (pattern maintenance). We study how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. We also study the normal roles of such signals in stem-cell physiology and their abnormal roles in the formation and expansion of cancer stem cells.

  • Joydeep Bhadury

    Joydeep Bhadury

    Instructor, Institute for Stem Cell Biology and Regenerative Medicine

    Current Research and Scholarly InterestsMy goal is to generate universally transplantable human organs in research animals.

  • Michael F. Clarke, M.D.

    Michael F. Clarke, M.D.

    Karel H. and Avice N. Beekhuis Professor of Cancer Biology

    Current Research and Scholarly InterestsDr. Clarke maintains a laboratory focused on two areas of research: i) the control of self-renewal of normal stem cells and diseases such as cancer and hereditary diseases; and ii) the identification and characterization of cancer stem cells. His laboratory is investigating how perturbations of stem cell regulatory machinery contributes to human disease. In particular, the laboratory is investigating epigenetic regulators of self renewal, the process by which stem cells regenerate themselves.

  • Agnieszka Czechowicz

    Agnieszka Czechowicz

    Assistant Professor of Pediatrics (Stem Cell Transplantation)
    On Leave from 09/26/2022 To 12/16/2922

    Current Research and Scholarly InterestsDr. Czechowicz’s research is aimed at understanding how hematopoietic stem cells interact with their microenvironment in order to subsequently modulate these interactions to improve bone marrow transplantation and unlock biological secrets that further enable regenerative medicine broadly. This work can be applied across a variety of disease states ranging from rare genetic diseases, autoimmune diseases, solid organ transplantation, microbiome-augmentation and cancer.

  • Thiago Almeida Pereira

    Thiago Almeida Pereira

    Instructor, Institute for Stem Cell Biology and Regenerative Medicine

    Current Research and Scholarly InterestsMy research focus on fibrosis pathogenesis, identifying key pathways for therapeutic intervention and biomarker discovery. I'm currently investigating the Hedgehog pathway in liver and lung fibrotic diseases, such as schistosomiasis mansoni, alcoholic and non-alcoholic fatty liver disease, viral hepatitis B and C, idiopathic pulmonary fibrosis. I'm also investigating the role of tumor associated macrophages and cancer associated fibroblasts in liver and head and neck cancers.

  • Tushar Desai

    Tushar Desai

    Professor of Medicine (Pulmonary, Allergy and Critical Care Medicine)

    Current Research and Scholarly InterestsBasic and translational research in lung stem cell biology, cancer, pulmonary fibrosis, COPD, and acute lung injury/ARDS. Upper airway stem cell CRISPR gene correction followed by autologous stem cell transplantation to treat Cystic fibrosis. Using lung organoids and precision cut lung slice cultures of mouse and human lungs to study molecular regulation of lung stem cells. Using transgenic mice to visualize Wnt protein transmission from niche cell to stem cell in vivo.

  • Maximilian Diehn, MD, PhD

    Maximilian Diehn, MD, PhD

    Jack, Lulu, and Sam Willson Professor and Professor of Radiation Oncology (Radiation Therapy)

    Current Research and Scholarly InterestsMy laboratory focuses on two main areas: 1) cancer stem cell biology and 2) novel biomarkers for identifying the presence of malignant cells (diagnostic), predicting outcome (prognostic), and predicting response to therapy (predictive). Areas of study include cancers of the lung, breast, and gastrointestinal system. Clinically I specialize in the treatment of lung cancer and applications of stereotactic ablative radiotherapy and perform both prospective and retrospective clinical studies.

  • Natalia Gomez-Ospina

    Natalia Gomez-Ospina

    Assistant Professor of Pediatrics (Genetics) and of Pediatrics (Stem Cell Transplantation)

    Current Research and Scholarly InterestsDr. Gomez-Ospina is a physician scientist and medical geneticist with a strong interest in the diagnosis and management of genetic diseases.

    1) Lysosomal storage diseases:
    Her research program is on developing better therapies for a large class of neurodegenerative diseases in children known as lysosomal storage disorders. Her current focus is on developing genome editing of hematopoietic stem cells as a therapeutic approach for these diseases beginning with Mucopolysaccharidosis type 1 and Gaucher disease. She established a genetic approach where therapeutic proteins can be targeted to a single well-characterized place in the genome known as a safe harbor. This approach constitutes a flexible, “one size fits all” approach that is independent of specific genes and mutations. This strategy, in which the hematopoietic system is commandeered to express and deliver therapeutic proteins to the brain can potentially change the current approaches to treating childhood neurodegenerative diseases and pave the way for alternative therapies for adult neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease


    2) Point of care ammonia testing
    She also works in collaboration with other researchers at Stanford to develop point-of-care testing for serum ammonia levels. Such device will greatly improve the quality of life of children and families with metabolic disorders with hyperammonemia.

    3) Gene discovery
    Dr Gomez-Ospina lead a multi-institutional collaboration resulting in the discovery of a novel genetic cause of neonatal and infantile cholestatic liver disease. She collaborated in the description of two novel neurologic syndromes caused by mutations in DYRK1 and CHD4.


    For more information go to our website:

    https://www.gomezospina.com/

  • Stefan Heller, PhD

    Stefan Heller, PhD

    Edward C. and Amy H. Sewall Professor in the School of Medicine and Professor of Otolaryngology - Head & Neck Surgery (OHNS)

    Current Research and Scholarly InterestsOur research focuses on the inner ear, from its earliest manifestation as one of the cranial placodes until it has developed into a mature and functioning organ. We are interested in how the sensory epithelia of the inner ear that harbor the sensory hair cells develop, how the cells mature, and how these epithelia respond to toxic insults. The overarching goal of this research is to find ways to regenerate lost sensory hair cells in mammals.

  • Siddhartha Jaiswal

    Siddhartha Jaiswal

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsWe identified a common disorder of aging called clonal hematopoiesis of indeterminate potential (CHIP). CHIP occurs due to certain somatic mutations in blood stem cells and represents a precursor state for blood cancer, but is also associated with increased risk of cardiovascular disease and death. We hope to understand more about the biology and clinical implications of CHIP using human and model system studies.

  • Kyle Loh

    Kyle Loh

    Assistant Professor of Developmental Biology (Stem Cell)

    BioHow the richly varied cell-types in the human body arise from one embryonic cell is a biological marvel and mystery. We have mapped how human embryonic stem cells develop into over twenty different human cell-types. This roadmap allowed us to generate enriched populations of human liver, bone, heart and blood vessel precursors in a Petri dish from embryonic stem cells. Each of these tissue precursors could regenerate their cognate tissue upon injection into respective mouse models, with relevance to regenerative medicine. In addition to our interests in developmental and stem cell biology, we also interested in discovering the entry receptors and target cells of deadly biosafety level 4 viruses, together with our collaborators.

    Kyle attended the County College of Morris and Rutgers University, and received his Ph.D. from Stanford University (working with Irving Weissman), with fellowships from the Hertz Foundation, National Science Foundation and Davidson Institute of Talent Development. He then continued as a Siebel Investigator, and later, as an Assistant Professor and The Anthony DiGenova Endowed Faculty Scholar at Stanford, where he is jointly appointed in the Department of Developmental Biology and Institute for Stem Cell Biology & Regenerative Medicine. Kyle is a Packard Fellow, Pew Scholar, Human Frontier Science Program Young Investigator and Baxter Foundation Faculty Scholar, and his research has been recognized by the NIH Director's Early Independence Award, Forbes 30 Under 30, Harold Weintraub Graduate Award, Hertz Foundation Thesis Prize and A*STAR Investigatorship.

  • Dr. Michael T. Longaker

    Dr. Michael T. Longaker

    Deane P. and Louise Mitchell Professor in the School of Medicine and Professor, by courtesy, of Materials Science and Engineering

    Current Research and Scholarly InterestsWe have six main areas of current interest: 1) Cranial Suture Developmental Biology, 2) Distraction Osteogenesis, 3) Fibroblast heterogeneity and fibrosis repair, 4) Scarless Fetal Wound Healing, 5) Skeletal Stem Cells, 6) Novel Gene and Stem Cell Therapeutic Approaches.

  • Ravi Majeti MD, PhD

    Ravi Majeti MD, PhD

    Director, Stanford Institute for Stem Cell Biology and Regenerative Medicine, RZ Cao Professor and Professor of Medicine (Hematology)

    Current Research and Scholarly InterestsThe Majeti lab focuses on the molecular/genomic characterization and therapeutic targeting of leukemia stem cells in human hematologic malignancies, particularly acute myeloid leukemia (AML). Our lab uses experimental hematology methods, stem cell assays, genome editing, and bioinformatics to define and investigate drivers of leukemia stem cell behavior. As part of these studies, we have led the development and application of robust xenotransplantation assays for human hematopoietic cells.

  • Michelle Monje

    Michelle Monje

    Professor of Neurology and, by courtesy, of Neurosurgery, of Pediatrics, of Pathology and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsThe Monje Lab studies the molecular and cellular mechanisms of postnatal neurodevelopment. This includes microenvironmental influences on neural precursor cell fate choice in normal neurodevelopment and in disease states.

  • Hiromitsu (Hiro) Nakauchi

    Hiromitsu (Hiro) Nakauchi

    Professor of Genetics (Stem Cell)
    On Leave from 10/01/2022 To 01/31/2023

    Current Research and Scholarly InterestsTranslation of discoveries in basic research into practical medical applications

  • Aaron Newman

    Aaron Newman

    Assistant Professor of Biomedical Data Science

    Current Research and Scholarly InterestsOur group develops computational strategies to study the phenotypic diversity, differentiation hierarchies, and clinical significance of tumor cell subsets. Key results are further explored experimentally, both in our lab and through collaboration, with the ultimate goal of translating promising findings into the clinic.

  • Roeland Nusse

    Roeland Nusse

    Virginia and Daniel K. Ludwig Professor of Cancer Research and the Reed-Hodgson Professor of Human Biology

    Current Research and Scholarly InterestsOur laboratory studies Wnt signaling in development and disease. We found recently that Wnt proteins are unusual growth factors, because they are lipid-modified. We discovered that Wnt proteins promote the proliferation of stem cells of various origins. Current work is directed at understanding the function of the lipid on the Wnt, using Wnt proteins as factors the expand stem cells and on understanding Wnt signaling during repair and regeneration after tissue injury.