School of Medicine
Showing 1-20 of 30 Results
-
Gary Dahl
Professor of Pediatrics (Hematology/Oncology), Emeritus
Current Research and Scholarly InterestsHematology/Oncology, Phase I drug studies for childhood cancer, overcoming multidrug resistance in leukemia and solid tumors, biology and treatment of acute nonlymphocytic leukemia, early detection of central nervous system leukemia by measuring growth, factor binding proteins.
-
Jeremy Dahl
Associate Professor of Radiology (Pediatric Radiology)
On Partial Leave from 07/01/2024 To 06/30/2025Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.
-
Hongjie Dai
The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus
BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.
Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.
The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.
Nanomaterials
The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.
Nanoscale Physics and Electronics
High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.
Nanomedicine and NIR-II Imaging
Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.
Electrocatalysis and Batteries
The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science. -
Xianjin Dai, PhD, DABR
Clinical Assistant Professor, Radiation Oncology - Radiation Physics
Current Research and Scholarly InterestsAI in Medicine
Biomedical Physics
Multimodal Imaging
Medical Device
Biomedical Optics
Photoacoustic/Thermoacoustic Imaging
Optical Imaging (Microscopy, OCT, DOT, FMT)
Ultrasound Imaging -
Heike Daldrup-Link
Professor of Radiology (General Radiology) and, by courtesy, of Pediatrics (Hematology/Oncology)
Current Research and Scholarly InterestsAs a physician-scientist involved in the care of pediatric patients and developing novel pediatric molecular imaging technologies, my goal is to link the fields of nanotechnology and medical imaging towards more efficient diagnoses and image-guided therapies. Our research team develops novel imaging techniques for improved cancer diagnosis, for image-guided-drug delivery and for in vivo monitoring of cell therapies in children and young adults.
-
Edward J. Damrose, MD, FACS
Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Anesthesiology, Perioperative & Pain Medicine
Current Research and Scholarly InterestsAdvanced MRI imaging for laryngeal cancer and swallowing disorders; applications of robotics in microlaryngeal surgery; high speed digital imaging of vocal fold vibration; the effects of hormones and anabolic steroids on vocal function.
-
Bruce Daniel
Professor of Radiology (Body Imaging) and, by courtesy, of Bioengineering
On Partial Leave from 09/01/2024 To 09/30/2024Current Research and Scholarly Interests1. MRI of Breast Cancer, particularly new techniques. Currently being explored are techniques including ultra high spatial resolution MRI and contrast-agent-free detection of breast tumors.
2. MRI-guided interventions, especially MRI-compatible remote manipulation and haptics
3. Medical Mixed Reality. Currently being explored are methods of fusing patients and their images to potentially improve breast conserving surgery, and other conditions. -
Kyle Gabriel Daniels
Assistant Professor of Genetics
BioKyle obtained his BS in Biochemistry from the University of Maryland College Park in 2010, conducting undergraduate research with Dr. Dorothy Beckett, PhD. He obtained his PhD in Biochemistry with a certificate in Structural Biology and Biophysics. His dissertation is titled "Kinetics of Coupled Binding and Conformational Change in Proteins and RNA" and was completed in the laboratory of Dr. Terrence G. Oas, PhD. Kyle performed postdoctoral training with Dr. Wendell A. Lim, PhD at UCSF studying how CAR T cell phenotype is encoded by modular signaling motifs within chimeric antigen receptors.
Kyle's lab is interested in harnessing the principles of modularity to engineer receptors and gene circuits to control cell functions.
The lab will use synthetic biology, medium- and high-throughput screens, and machine learning to: (1) Engineer immune cells to achieve robust and durable responses against various cancer targets, (2) Coordinate behavior of multiple engineered cell types in cancer, autoimmune disease, and payload delivery, (3) Control survival, proliferation, and differentiation of hematopoietic stem cells (HSCs) and immune cells, and (4) Explore principles of modularity related to engineering receptors and gene circuits in mammalian cells. -
Millie Das
Clinical Professor, Medicine - Oncology
BioDr. Das specializes in the treatment of thoracic malignancies. She sees and treats patients both at the Stanford Cancer Center and at the Palo Alto VA Hospital. She is Chief of Oncology at the Palo Alto VA and is an active member of the VA national Lung Cancer Working Group and Lung Cancer Precision Oncology Program. In 2023, she was elected President the Association of Northern California Oncologists (ANCO), where she displays her passion for patient advocacy and also for clinician education by helping to organize Bay Area focused continuing medical education programs. She is the VA site director for the Stanford fellowship program and leads the VA thoracic tumor board on a biweekly basis. She has a strong interest in clinical research, serving as a principal investigator for multiple clinical and translational studies at the Palo Alto VA, and also as a co-investigator on all of the lung cancer trials at Stanford. In her free time, she enjoys spending time with her family, traveling, and running.
-
Kara Davis
Associate Professor of Pediatrics (Hematology/Oncology)
Current Research and Scholarly InterestsChildhood cancers can be considered aberrations of normal tissue development. We are interested in understanding childhood cancers through the lens of normal development. Further, individual tumors are composed of heterogeneous cell populations, not all cells being equal in their ability to respond to treatment or to repopulate a tumor. Thus, we take single cell approach to determine populations of clinical relevance.
-
Mark M. Davis
Burt and Marion Avery Family Professor
Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.
-
Ronald W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly InterestsWe are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.
-
Aaron J. Dawes, MD, PhD, FACS, FASCRS
Assistant Professor of Surgery (General Surgery)
BioDr. Dawes is a board-certified, fellowship-trained colon and rectal surgeon. He is also an Assistant Professor in the Department of Surgery, Division of General Surgery at Stanford University School of Medicine.
Dr. Dawes treats a wide variety of conditions involving the colon, rectum, and anus, always leveraging the latest evidence and technologies. He is fully trained in minimally invasive surgical techniques--including laparoscopic, robotic, and trans-anal minimally invasive surgery--and strives to employ them, whenever possible, in an effort to reduce pain and shorten recovery.
In addition to his clinical work, Dr. Dawes is a health services researcher, receiving his Ph.D. in Health Policy and Management from the UCLA Fielding School of Public Health. His research focuses on policy development, measurement, and evaluation for patients with colorectal conditions. He is particularly interested in using data to drive policy interventions aimed at reducing disparities in quality, access, and value.
Prior to joining Stanford, Dr. Dawes completed a residency in General Surgery at the University of California, Los Angeles followed by a fellowship in Colon and Rectal Surgery at the University of Minnesota. He has authored articles in the Journal of the American Medical Association (JAMA), Cancer, Diseases of the Colon and Rectum, Health Services Research, and JAMA Surgery. His work has also been featured in the Los Angeles Times, the Daily Press, and HealthDay News.
A native of the San Francisco Bay Area, Dr. Dawes received his A.B. in Public and International Affairs from Princeton University and his M.D. from Vanderbilt University. -
Adam de la Zerda
Associate Professor of Structural Biology and, by courtesy, of Electrical Engineering
Current Research and Scholarly InterestsMolecular imaging technologies for studying cancer biology in vivo
-
Daniel James Delitto, MD, PhD, FACS
Assistant Professor of Surgery (General Surgery)
BioDr. Delitto is a board certified complex general surgical oncologist with a focus on conditions of the liver, pancreas, and stomach. He is an assistant professor in Stanford Medicine’s Department of Surgery.
His education includes a decade of postgraduate training in complex general surgical oncology, as well as a PhD in immunology with an emphasis on cancer biology. He completed a clinical fellowship at Johns Hopkins University and continued his research at the postdoctoral level in the laboratory of Dr. Elizabeth Jaffee. His research focus is on advancing the field of cancer immunology and harnessing his findings to improve immunotherapies.
He was the principal investigator of two studies examining the immune response to pancreatic cancer, including one funded by the National Cancer Institute.
Dr. Delitto has presented the findings of his research at conferences such as the American Association for Cancer Research, Society for the Immunotherapy of Cancer, American Association of Immunologists, American College of Surgeons, Academic Surgical Congress and Pancreas Club. In addition to cancer immunology, he has also presented work focused on cancer cachexia, surgical outcomes, translational experimental models and a variety of other oncologic topics.
He has published original work in Nature Communications, the Journal of the National Cancer Institute, Cancer Research, Clinical Cancer Research, and other high impact journals. He is also a reviewer for Annals of Surgery, Scientific Reports, Surgery, Tumor Biology, Journal of Surgical Research, PLOS ONE, and the Journal of Translational Medicine.
Dr. Delitto has earned numerous honors related to clinical excellence, teaching and research. He is board certified by the American Board of Surgery and a member of the Society of Surgical Oncology, American Association for Cancer Research and American Association of Immunologists. -
Wendy DeMartini
Professor of Radiology (Breast Imaging)
BioDr. Wendy DeMartini is a Professor in the Department of Radiology at Stanford University School of Medicine. She currently serves as the Associate Chair for Clinical Faculty Affairs in the Department of Radiology, and is the past Division Chief of Breast Imaging. Her work is focused upon high quality patient care, clinical research and education.
Dr. DeMartini completed her fellowship in Breast Imaging at the University of Washington School of Medicine in Seattle, Washington. She then served as Breast Imaging faculty at the University of Washington where she became Associate Professor and Associate Director of Clinical Services, and at the University of Wisconsin where she became Professor and Chief of Breast Imaging.
Dr. DeMartini has more than 100 research presentations, abstracts/publications, review articles or book chapters. Her research is directed toward the appropriate evidence-based use of imaging tests to optimize the detection and evaluation of breast cancer. She has served as an investigator on several studies of breast MRI funded by the National Cancer Institute and by the American College of Radiology Imaging Network (ACRIN). Particular research topics have included the development of a pilot tool for predicting the probability of malignancy of breast MRI lesions, assessment of the impact of background parenchymal enhancement (BPE) on breast MRI accuracy, and evaluation of utilization patterns of breast MRI and other emerging technologies. She also served as the Editor-in-Chief of the Journal of Breast Imaging from 2023 to 2024.
Dr. DeMartini is a highly sought-after educator. She lectures on a broad spectrum of breast imaging topics nationally and internationally, including in the Americas, Europe, Australasia and Africa. She is the past Co-Director of the American College of Radiology (ACR) Education Center Breast MRI with Biopsy Course. Dr. DeMartini is an active member of many professional organizations and committees, including in the Radiologic Society of North America, the American College of Radiology and the Society of Breast Imaging (SBI). She was elected as an SBI Fellow in 2009 and served as President of the SBI in 2017-2018. -
Utkan Demirci
Professor of Radiology (Canary Cancer Center) and, by courtesy, of Electrical Engineering
On Partial Leave from 02/26/2024 To 02/25/2025BioUtkan Demirci is a tenured professor in the School of Medicine at Stanford University and serves as the Interim Division Chief and Director of the Canary Center at Stanford for Cancer Early Detection in the Department of Radiology. Prior to Stanford, he was an Associate Professor of Medicine at the Brigham and Women’s Hospital, Harvard Medical School, and a faculty member of the Harvard-MIT Health Sciences and Technology division.
Professor Demirci received his PhD from Stanford University in Electrical Engineering in 2005 and holds M.S. degrees in Electrical Engineering, and in Management Science and Engineering. He has published over 200 peer-reviewed journal articles, 24 book chapters, 7 edited books, and several hundred abstracts and proceedings, as well as having over 25 patents and disclosures pending or granted. He has mentored and trained hundreds of successful scientists, entrepreneurs and academicians and fostered research and industry collaborations around the world. Dr. Demirci was awarded the NSF CAREER Award, and IEEE EMBS Early Career Award. He is currently a fellow of the the American Institute for Medical and Biological Engineering (AIMBE, 2017), and Distinguished Investigator of the Academy for Radiology and Biomedical Imaging Research and serves as an editorial board member for a number of peer-reviewed journals.
The BAMM Lab group focuses on developing innovative extracellular vesicle isolation tools, point-of-care technologies and creating microfluidic platforms for early cancer detection with broad applications to multiple diseases including infertility and HIV. Dr. Demirci’s lab has collaborated with over 50 research groups and industry partners around the world. His seminal work in microfluidics has led to the development of innovative FDA-approved platform technologies in medicine and many of his inventions have been industry licensed. He holds several FDA-approved and CE-marked technologies that have been widely used by fertility clinics with assisted reproductive technologies leading to over thousands of live births globally and in the US.
Dr. Demirci is a serial academic entrepreneur and co-founder of DxNow, Zymot, Levitas Bio, Mercury Biosciences and Koek Biotech and serves as an advisor, consultant and/or board member to some early stage companies and investment groups. -
Atman Desai, MD
Clinical Professor, Neurosurgery
Current Research and Scholarly InterestsThe Stanford Spine Artificial Intelligence Laboratory, led by Dr. Atman Desai MD, MA, FACS, is a collaboration of Stanford neurosurgeons, radiologists, orthopedic surgeons and data scientists who share the goal of advancing the field of artificial intelligence to provide better surgical outcomes for spine patients. Our laboratory works closely with the Stanford Center for Artificial Intelligence in Medicine and Imaging, and studies the application of computer vision and deep learning to spinal i
-
Kaniksha Desai
Clinical Associate Professor, Medicine - Endocrinology, Gerontology, & Metabolism
BioDr. Kaniksha Desai is a board-certified endocrinologist and clinical associate professor at Stanford University. She completed her endocrinology fellowship at the Mayo Clinic, with an emphasis on the management of patients with thyroid cancer. Dr. Desai’s clinical practice focuses on the management of patients with thyroid nodules and thyroid cancer. She also maintains board certification in neck ultrasonography.
-
Manisha Desai (She/Her/Hers)
Kim and Ping Li Professor, Professor (Research) of Medicine (Quantitative Sciences Unit), of Biomedical Data Science and, by courtesy, of Epidemiology and Population Health
Current Research and Scholarly InterestsDr. Desai is the Director of the Quantitative Sciences Unit. She is interested in the application of biostatistical methods to all areas of medicine including oncology, nephrology, and endocrinology. She works on methods for the analysis of epidemiologic studies, clinical trials, and studies with missing observations.