School of Medicine


Showing 1-20 of 27 Results

  • Jeremy Dahl

    Jeremy Dahl

    Associate Professor of Radiology (Pediatric Radiology)

    Current Research and Scholarly InterestsUltrasonic beamforming, imaging methods, systems, and devices.

  • Hongjie Dai

    Hongjie Dai

    The J.G. Jackson and C.J. Wood Professor of Chemistry, Emeritus

    BioProfessor Dai’s research spans chemistry, physics, and materials and biomedical sciences, leading to materials with properties useful in electronics, energy storage and biomedicine. Recent developments include near-infrared-II fluorescence imaging, ultra-sensitive diagnostic assays, a fast-charging aluminum battery and inexpensive electrocatalysts that split water into oxygen and hydrogen fuels.

    Born in 1966 in Shaoyang, China, Hongjie Dai began his formal studies in physics at Tsinghua U. (B.S. 1989) and applied sciences at Columbia U. (M.S. 1991). He obtained his Ph.D. from Harvard U and performed postdoctoral research with Dr. Richard Smalley. He joined the Stanford faculty in 1997, and in 2007 was named Jackson–Wood Professor of Chemistry. Among many awards, he has been recognized with the ACS Pure Chemistry Award, APS McGroddy Prize for New Materials, Julius Springer Prize for Applied Physics and Materials Research Society Mid-Career Award. He has been elected to the American Academy of Arts and Sciences, National Academy of Sciences (NAS), National Academy of Medicine (NAM) and Foreign Member of Chinese Academy of Sciences.

    The Dai Laboratory has advanced the synthesis and basic understanding of carbon nanomaterials and applications in nanoelectronics, nanomedicine, energy storage and electrocatalysis.

    Nanomaterials
    The Dai Lab pioneered some of the now-widespread uses of chemical vapor deposition for carbon nanotube (CNT) growth, including vertically aligned nanotubes and patterned growth of single-walled CNTs on wafer substrates, facilitating fundamental studies of their intrinsic properties. The group developed the synthesis of graphene nanoribbons, and of nanocrystals and nanoparticles on CNTs and graphene with controlled degrees of oxidation, producing a class of strongly coupled hybrid materials with advanced properties for electrochemistry, electrocatalysis and photocatalysis. The lab’s synthesis of a novel plasmonic gold film has enhanced near-infrared fluorescence up to 100-fold, enabling ultra-sensitive assays of disease biomarkers.

    Nanoscale Physics and Electronics
    High quality nanotubes from his group’s synthesis are widely used to investigate the electrical, mechanical, optical, electro-mechanical and thermal properties of quasi-one-dimensional systems. Lab members have studied ballistic electron transport in nanotubes and demonstrated nanotube-based nanosensors, Pd ohmic contacts and ballistic field effect transistors with integrated high-kappa dielectrics.

    Nanomedicine and NIR-II Imaging
    Advancing biological research with CNTs and nano-graphene, group members have developed π–π stacking non-covalent functionalization chemistry, molecular cellular delivery (drugs, proteins and siRNA), in vivo anti-cancer drug delivery and in vivo photothermal ablation of cancer. Using nanotubes as novel contrast agents, lab collaborations have developed in vitro and in vivo Raman, photoacoustic and fluorescence imaging. Lab members have exploited the physics of reduced light scattering in the near-infrared-II (1000-1700nm) window and pioneered NIR-II fluorescence imaging to increase tissue penetration depth in vivo. Video-rate NIR-II imaging can measure blood flow in single vessels in real time. The lab has developed novel NIR-II fluorescence agents, including CNTs, quantum dots, conjugated polymers and small organic dyes with promise for clinical translation.

    Electrocatalysis and Batteries
    The Dai group’s nanocarbon–inorganic particle hybrid materials have opened new directions in energy research. Advances include electrocatalysts for oxygen reduction and water splitting catalysts including NiFe layered-double-hydroxide for oxygen evolution. Recently, the group also demonstrated an aluminum ion battery with graphite cathodes and ionic liquid electrolytes, a substantial breakthrough in battery science.

  • Ronald L. Dalman MD

    Ronald L. Dalman MD

    Dr. Walter C. Chidester Professor

    Current Research and Scholarly InterestsVascular biology, arterial remodeling, aneurysm development; innovative treatment strategies for AAA, animal models of arterial disease, arterial remodeling and flow changes in spinal cord injury, genetic regulation of arterial aneurysm formation

  • Rajesh Dash, MD PhD;      Director of SSATHI & CardioClick

    Rajesh Dash, MD PhD; Director of SSATHI & CardioClick

    Associate Professor of Medicine (Cardiovascular Medicine)

    Current Research and Scholarly InterestsI have two research areas:
    1) Heart disease in South Asians - genetic, metabolic, & behavioral underpinnings of an aggressive phenotype.

    2) Imaging cell injury & recovery in the heart. Using Cardiac MRI to visualize signals of early injury and facilitating preventive medical therapy. Optimizing new imaging methods for viable cells to delineate live heart cells or transplanted stem cells.

  • Reinhold Dauskardt

    Reinhold Dauskardt

    Ruth G. and William K. Bowes Professor in the School of Engineering

    BioDauskardt and his group have worked extensively on integrating new materials into emerging technologies including thin-film structures for nanoscience and energy technologies, high-performance composite and laminates for aerospace, and on biomaterials and soft tissues in bioengineering. His group has pioneered methods for characterizing adhesion and cohesion of thin films used extensively in device technologies. His research on wound healing has concentrated on establishing a biomechanics framework to quantify the mechanical stresses and biologic responses in healing wounds and define how the mechanical environment affects scar formation. Experimental studies are complimented with a range of multiscale computational capabilities. His research includes interaction with researchers nationally and internationally in academia, industry, and clinical practice.

  • Kiera Davis

    Kiera Davis

    Clinical Associate Director, Education & Training & Project Leader, ValleyCare, Med/Stanford Center for Clinical Research

    Current Role at StanfordClinical Associate Director, Education & Training
    Program Lead, SHC Tri-Valley Program Management Office (PMO)

  • Mark M. Davis

    Mark M. Davis

    Director, Stanford Institute for Immunity, Transplantation and Infection and the Burt and Marion Avery Family Professor

    Current Research and Scholarly InterestsMolecular mechanisms of lymphocyte recognition and differentiation; Systems immunology and human immunology; vaccination and infection.

  • Vinicio de Jesus Perez MD

    Vinicio de Jesus Perez MD

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly InterestsMy work is aimed at understanding the molecular mechanisms involved in the development and progression of pulmonary arterial hypertension (PAH). I am interested in understanding the role that the BMP and Wnt pathways play in regulating functions of pulmonary endothelial and smooth muscle cells both in health and disease.

  • Robert DeBusk

    Robert DeBusk

    Professor of Medicine, Emeritus

    Current Research and Scholarly InterestsExperimental and clinical epidemiology of myocardial, infarction; exercise testing; cardiac risk factor management;, cardiac rehabilitation; systems for patient management; ischemic, heart disease; computer-based expert systems.

  • Utkan Demirci

    Utkan Demirci

    Professor of Radiology (Canary Cancer Center) and, by courtesy, of Electrical Engineering
    On Partial Leave from 02/26/2024 To 02/25/2025

    BioUtkan Demirci is a tenured professor in the School of Medicine at Stanford University and serves as the Interim Division Chief and Director of the Canary Center at Stanford for Cancer Early Detection in the Department of Radiology. Prior to Stanford, he was an Associate Professor of Medicine at the Brigham and Women’s Hospital, Harvard Medical School, and a faculty member of the Harvard-MIT Health Sciences and Technology division.

    Professor Demirci received his PhD from Stanford University in Electrical Engineering in 2005 and holds M.S. degrees in Electrical Engineering, and in Management Science and Engineering. He has published over 200 peer-reviewed journal articles, 24 book chapters, 7 edited books, and several hundred abstracts and proceedings, as well as having over 25 patents and disclosures pending or granted. He has mentored and trained hundreds of successful scientists, entrepreneurs and academicians and fostered research and industry collaborations around the world. Dr. Demirci was awarded the NSF CAREER Award, and IEEE EMBS Early Career Award. He is currently a fellow of the the American Institute for Medical and Biological Engineering (AIMBE, 2017), and Distinguished Investigator of the Academy for Radiology and Biomedical Imaging Research and serves as an editorial board member for a number of peer-reviewed journals.

    The BAMM Lab group focuses on developing innovative extracellular vesicle isolation tools, point-of-care technologies and creating microfluidic platforms for early cancer detection with broad applications to multiple diseases including infertility and HIV. Dr. Demirci’s lab has collaborated with over 50 research groups and industry partners around the world. His seminal work in microfluidics has led to the development of innovative FDA-approved platform technologies in medicine and many of his inventions have been industry licensed. He holds several FDA-approved and CE-marked technologies that have been widely used by fertility clinics with assisted reproductive technologies leading to over thousands of live births globally and in the US.

    Dr. Demirci is a serial academic entrepreneur and co-founder of DxNow, Zymot, Levitas Bio, Mercury Biosciences and Koek Biotech and serves as an advisor, consultant and/or board member to some early stage companies and investment groups.

  • Tushar Desai

    Tushar Desai

    Professor of Medicine (Pulmonary, Allergy and Critical Care Medicine)

    Current Research and Scholarly InterestsBasic and translational research in lung stem cell biology, cancer, pulmonary fibrosis, COPD, and acute lung injury/ARDS. Upper airway stem cell CRISPR gene correction followed by autologous stem cell transplantation to treat Cystic fibrosis. Using lung organoids and precision cut lung slice cultures of mouse and human lungs to study molecular regulation of lung stem cells. Using transgenic mice to visualize Wnt protein transmission from niche cell to stem cell in vivo.

  • Gundeep Dhillon, MD, MPH

    Gundeep Dhillon, MD, MPH

    Associate Professor of Medicine (Pulmonary and Critical Care Medicine)

    Current Research and Scholarly Interests1. Use of an administrative database (UNOS) to study lung transplant outcomes.
    2. Expression of the plasminogen activator inhibitor (PAI) 1 antibody in peripheral blood after lung transplantation and its association with bronchiolitis obliterans syndrome (chronic rejection).
    3. Impact of airway hypoxia, due to lack of bronchial circulation, on long-term lung transplant outcomes.
    4. CMV specific T-cell immunity in lung transplant recipients and its impact on acute rejection.

  • Jennifer Dionne

    Jennifer Dionne

    Associate Professor of Materials Science and Engineering, Senior Fellow at the Precourt Institute for Energy and Associate Professor, by courtesy, of Radiology

    BioJennifer Dionne is the Senior Associate Vice Provost of Research Platforms/Shared Facilities and an Associate Professor of Materials Science and Engineering and of Radiology (by courtesy) at Stanford. Jen received her Ph.D. in Applied Physics at the California Institute of Technology, advised by Harry Atwater, and B.S. degrees in Physics and Systems & Electrical Engineering from Washington University in St. Louis. Prior to joining Stanford, she served as a postdoctoral researcher in Chemistry at Berkeley, advised by Paul Alivisatos. Jen's research develops nanophotonic methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her work has been recognized with the Alan T. Waterman Award (2019), an NIH Director's New Innovator Award (2019), a Moore Inventor Fellowship (2017), the Materials Research Society Young Investigator Award (2017), Adolph Lomb Medal (2016), Sloan Foundation Fellowship (2015), and the Presidential Early Career Award for Scientists and Engineers (2014), and was featured on Oprah’s list of “50 Things that will make you say ‘Wow!'"

  • Rajiv Doshi, MD

    Rajiv Doshi, MD

    Adjunct Professor and Director, India Biodesign Program, Medicine - Cardiovascular Medicine

    Current Research and Scholarly InterestsDr. Rajiv Doshi serves as an Adjunct Professor of Medicine and as the Director of the India Program at the Byers Center for Biodesign. Dr. Doshi is also the co-Director of the India-based Founders Forum, an executive education training program for India’s leading health technology entrepreneurs. He has also advised the Government of India and various Indian state governments in the development of policies that support Indian health technology innovation.