School of Medicine
Showing 41-51 of 51 Results
-
David Drover
Professor of Anesthesiology, Perioperative and Pain Medicine (MSD)
On Partial Leave from 05/01/2024 To 01/31/2025Current Research and Scholarly InterestsField of clinical pharmacology. This involves analysis of what the body does to a drug (pharmacokinetics) and how exactly a specific drug affects the body (pharmacodynamics). His research starts at the level of new drug development with detailed analysis of the pharmacokinetics and pharmacodynamics of a medication.
-
Maurice L. Druzin
Professor of Obstetrics and Gynecology (Maternal Fetal Medicine and Obstetrics) and, by courtesy, of Pediatrics
Current Research and Scholarly InterestsAntepartum and intrapartum fetal monitoring Prenatal diagnosis Medical complications of pregnancy, particularly: SLE, hypertension, diabetes, malignancy A.
-
Justin Du Bois
Henry Dreyfus Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology
BioResearch and Scholarship
Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C–H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.
The Du Bois group has described new tactics for the selective conversion of saturated C–H to C–N and C–O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C–H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.
In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models. -
Dawn Duane
Clinical Professor, Neurology
Clinical Professor (By courtesy), PediatricsCurrent Research and Scholarly InterestsI am a general pediatric neurologist. My interest is in clinical diagnosis and treatment of common neurologic diseases in pediatric patients and teaching feature doctors, neurologists and pediatric neurologists about pediatric neurology.
-
Anne Dubin
Endowed Professor of Pediatric Cardiology
Current Research and Scholarly InterestsArrhythmia management in pediatric heart failure, especially resynchronization therapy in congenital heart disease,Radio frequency catheter ablation of pediatric arrhythmias,
-
Alexander Dunn
Professor of Chemical Engineering
Current Research and Scholarly InterestsMy lab is deeply interested in uncovering the physical principles that underlie the construction of complex, multicellular animal life.
-
James Dunn
Professor of Surgery (Pediatric Surgery) and, by courtesy, of Bioengineering
Current Research and Scholarly InterestsIntestinal lengthening for short bowel syndrome
Intestinal stem cell therapy for intestinal failure
Skin derived precursor cell therapy for enteric neuromuscular dysfunction
Intestinal tissue engineering -
Ram S Duriseti
Clinical Associate Professor, Emergency Medicine
BioRam's Doctoral background and academic interests are in the computational modeling of complex decisions, algorithm design and implementation, and data driven decision making. Outside of clinical work, his main competencies in this regard are software development, algorithm design and implementation, cost-effectiveness analysis, and decision analysis through computational models. He has also collaborated with industry to create and deploy operation specific software involving statistical computing and reasoning under inference. He has been practicing clinical Emergency Medicine in both community and academic settings for over 20 years.
https://www.shiftgen.com/about
https://www.linkedin.com/in/ram-duriseti-991614/ -
Gozde Durmus
Assistant Professor (Research) of Radiology (Molecular Imaging Program at Stanford)
Current Research and Scholarly InterestsDr. Durmus' research focuses on applying micro/nano-technologies to investigate cellular heterogeneity for single-cell analysis and personalized medicine. At Stanford, she is developing platform technologies for sorting and monitoring cells at the single-cell resolution. This magnetic levitation-based technology is used for wide range of applications in medicine, such as, label-free detection of circulating tumor cells (CTCs) from blood; high-throughput drug screening; and rapid detection and monitoring of antibiotic resistance in real-time. During her PhD, she has engineered nanoparticles and nanostructured surfaces to decrease antibiotic-resistant infections.