School of Medicine


Showing 41-60 of 243 Results

  • Benny Gavi, MD, MTS

    Benny Gavi, MD, MTS

    Clinical Assistant Professor, Medicine

    Current Research and Scholarly InterestsHospitalist Medicine
    Medicine Consultation
    Quality Improvement
    Medical Ethics
    Organizational Ethics
    Medical Humanities

  • Charles Gawad

    Charles Gawad

    Associate Professor of Pediatrics (Hematology/Oncology)

    BioOur lab works at the interface of biotechnology, computational biology, cellular biology, and clinical medicine to develop and apply new tools for characterizing genetic variation across single cells within a tissue with unparalleled sensitivity and accuracy. We are focused on applying these technologies to study cancer clonal evolution while patients are undergoing treatment with the aim of identifying cancer clonotypes that are associated with resistance to specific drugs so as to better understand and predict treatment response. We are also applying these methods to understand how more virulent pathogens emerge from a population of bacteria or viruses with an emphasis on developing a deeper understanding of how antibiotic resistance develops.

  • Michael W. Gaynon, MD

    Michael W. Gaynon, MD

    Clinical Professor, Ophthalmology

    Current Research and Scholarly Interests-Retinal Vascular Disease
    -Angiogenesis
    -Retinopathy of Prematurity
    -Sustained Release Drug Delivery Systems

  • Sharon Markham Geaghan

    Sharon Markham Geaghan

    Associate Professor of Pathology at the Stanford University Medical Center, Emerita

    Current Research and Scholarly InterestsPediatric Hematopathology, Pediatric Laboratory Medicine and Pathology

  • Pascal Geldsetzer

    Pascal Geldsetzer

    Assistant Professor of Medicine (Primary Care and Population Health) and, by courtesy, of Epidemiology and Population Health

    BioPascal Geldsetzer is an Assistant Professor of Medicine in the Division of Primary Care and Population Health and, by courtesy, in the Department of Epidemiology and Population Health. He is also affiliated with the Department of Biomedical Data Science, Department of Health Policy, King Center for Global Development, and the Stanford Centers for Population Health Sciences, Innovation in Global Health, and Artificial Intelligence in Medicine & Imaging.

    His research focuses on identifying and evaluating the most effective interventions for improving health at older ages. In addition to leading several randomized trials, his methodological emphasis lies on the use of quasi-experimental approaches to ascertain causal effects in large observational datasets, particularly in electronic health record data. He has won an NIH New Innovator Award (in 2022), a Chan Zuckerberg Biohub investigatorship (in 2022), and two NIH R01 grants as Principal Investigator (both in 2023).

  • Linda N. Geng, MD, PhD

    Linda N. Geng, MD, PhD

    Clinical Associate Professor, Medicine - Primary Care and Population Health

    Current Research and Scholarly InterestsMy scholarly interests are focused on defining, studying, and improving patients' diagnostic journeys. What prolongs the journey to the correct diagnosis and how can we shorten it? With this question in mind, we are exploring crowdsourcing, informatics/AI, health data visualization, and advanced laboratory testing as ways to help tackle the toughest cases in medicine-- complex, rare, and mystery conditions.

    With the COVID pandemic, the puzzling and complex illness of post-acute COVID-19 syndrome (PACS) or long COVID came to light. Together with a multidisciplinary group of physicians and researchers, we launched a program here at Stanford to advance the care and understanding of PACS. Our goal is to better understand the natural history, clinical symptomatology, immunological response, risk factors, and subgroup stratification for PACS. We are also actively assessing management strategies that may be effective for heterogeneous PACS symptoms.

  • Grace Gengoux

    Grace Gengoux

    Clinical Professor, Psychiatry and Behavioral Sciences - Child & Adolescent Psychiatry and Child Development

    Current Research and Scholarly InterestsDr. Grace Gengoux is Director of the Autism Intervention Clinic and leads an autism intervention research program focused on developing and evaluating promising behavioral and developmental treatments for Autism Spectrum Disorder (ASD).

    Dr. Gengoux is also Associate Chair for Faculty Engagement & Well-being and Department Well-being Director in the Department of Psychiatry and Behavioral Sciences, leading the department's Standing Well-being Advisory Committee.

  • Mark Genovese

    Mark Genovese

    James W. Raitt M.D. Professor, Emeritus

    Current Research and Scholarly InterestsClinical trials and interventions in the rheumatic diseases including Rheumatoid Arthritis,Systemic Lupus Erythematosus, Systemic Sclerosis, Osteoarthritis.

  • Michael Gensheimer

    Michael Gensheimer

    Clinical Associate Professor, Radiation Oncology - Radiation Therapy

    Current Research and Scholarly InterestsIn addition to my clinical research in head and neck and lung cancer, I work on the application of computer science and machine learning to cancer research. I develop tools for analyzing large datasets to improve outcomes and safety of cancer treatment. I developed a machine learning prognostic model using data from around 13,000 patients with metastatic cancer which performs better than traditional models and physicians [PubMed ID 33313792]. We recently completed a prospective randomized study in thousands of patients in which the model was used to help improve advance care planning conversations.

    I also work on the methods underpinning observational and predictive modeling research. My open source nnet-survival software that allows use of neural networks for survival modeling has been used by researchers internationally. In collaboration with the Stanford Research Informatics Center, I examined how electronic medical record (EMR) survival outcome data compares to gold-standard data from a cancer registry [PubMed ID 35802836]. The EMR data captured less than 50% of deaths, a finding that affects many studies being published that use EMR outcomes data.

  • Paul George, MD, PhD

    Paul George, MD, PhD

    Associate Professor of Neurology (Adult Neurology) and, by courtesy, of Neurosurgery

    Current Research and Scholarly InterestsCONDUCTIVE POLYMER SCAFFOLDS FOR STEM CELL-ENHANCED STROKE RECOVERY:
    We focus on developing conductive polymers for stem cell applications. We have created a microfabricated, polymeric system that can continuously interact with its biological environment. This interactive polymer platform allows modifications of the recovery environment to determine essential repair mechanisms. Recent work studies the effect of electrical stimulation on neural stem cells seeded on the conductive scaffold and the pathways by which it enhances stroke recovery Further understanding the combined effect of electrical stimulation and stem cells in augmenting neural repair for clinical translational is a major focus of this research going forward.

    BIOPOLYMER SYSTEMS FOR NEURAL RECOVERY AND STEM CELL MODULATION:
    The George lab develops biomaterials to improve neural recovery in the peripheral and central nervous systems. By controlled release of drugs and molecules through biomaterials we can study the temporal effect of these neurotrophic factors on neural recovery and engineer drug delivery systems to enhance regenerative effects. By identifying the critical mechanisms for stroke and neural recovery, we are able to develop polymeric technologies for clinical translation in nerve regeneration and stroke recovery. Recent work utilizing these novel conductive polymers to differentiate stem cells for therapeutic and drug discovery applications.

    APPLYING ENGINEERING TECHNIQUES TO DETERMINE BIOMARKERS FOR STROKE DIAGNOSTICS:
    The ability to create diagnostic assays and techniques enables us to understand biological systems more completely and improve clinical management. Previous work utilized mass spectroscopy proteomics to find a simple serum biomarker for TIAs (a warning sign of stroke). Our study discovered a novel candidate marker, platelet basic protein. Current studies are underway to identify further candidate biomarkers using transcriptome analysis. More accurate diagnosis will allow for aggressive therapies to prevent subsequent strokes.

  • Marios Georgiadis

    Marios Georgiadis

    Instructor, Radiology

    BioMarios is an Instructor of Neuroimaging, part of the Faculty of the Stanford University School of Medicine.

    He is in the Translational Neuroimaging lab, headed by Dr Michael Zeineh, since 2019.
    His research focuses mainly on myelin and iron imaging in neurologic diseases, primarily using experimental X-ray and MRI approaches. He is also actively involved in projects related to imaging and modeling brain trauma, exosome signatures of neurodegeneration, and imaging the brain using advanced forms of electron and light microscopy.

    Marios is a mechanical engineer by training (School of Mechanical Engineering, National Technical University of Athens, Greece). His thesis "Closed-loop force control of a haptic surgical simulator", was performed in the Control Systems Lab of Prof. Evangelos Papadopoulos.

    In 2011 he obtained his MSc in Biomedical Engineering from ETH Zurich (Swiss Federal Institute of Technology). He performed his thesis in IBM Research on "Advanced pathology using the Microfluidic Probe", under Emmanuel Delamarche and Govind Kaigala, and was awarded the ETH medal for this work.

    He completed his PhD in Bone Biomechanics in the lab of Prof. Ralph Muller in ETH Zurich, where he developed X-ray scattering-based methods to investigate bone microstructure in 3D, research that earned him the 2nd Student Award from the European Society for Biomechanics in 2015.

    In 2016 he started using imaging methods to study brain microstructure, in the lab of Prof. Markus Rudin, in the Institute for Biomedical Engineering of ETH Zurich. There, he combined X-ray scattering with DTI, histology and CLARITY for studying rodent brain.

    In 2017 he joined the MRI Biophysics group of Profs. Els Fieremans and Dmitry Novikov in New York University School of Medicine, to study human and mouse brain microstructure using X-ray scattering and diffusion MRI.

    His research on myelin in mouse and human brain using X-ray scattering has been supported twice by the Swiss National Science Foundation.